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Real/Dollar Exchange Rate Prediction Combining
Machine Learning and Fundamental Models

Gustavo Pompeu (University of Brasilia) 
 José Rossi (Inter-American Development Bank) 

Abstract

The study of the predictability of exchange rates has been a very recurring

theme on the economics literature for decades, and very often is not possible to

beat a random walk prediction, particularly when trying to forecast short time

periods. Although there are several studies about exchange rate forecasting in

general, predictions of specifically Brazilian real (BRL) to United States dollar

(USD) exchange rates are very hard to find in the literature. The objective of

this work is to predict the specific BRL to USD exchange rates by applying

machine learning models combined with fundamental theories from macroeco-

nomics, such as monetary and Taylor rule models, and compare the results to

those of a random walk model by using the root mean squared error (RMSE)

and the Diebold-Mariano (DM) test, and we show that it is possible to beat the

random walk by these metrics.

Keywords: forecasting, fundamental theories, macroeconomics, R software,

statistics

JEL Classification: N76; O13; C22; C53; Q47

1. Introduction

The attempt to predict exchange rates between two currencies is an old

problem and often discussed in the economics literature, specially given the



difficulty of obtaining good enough results to beat a no-change prediction, i.e.,

a random walk (Moosa and Burns, 2014).5

In the specific case of exchange rates between Brazilian real (BRL) and

United States dollar (USD) this difficult is even bigger, because BRL is a very

recent currency, only being introduced in Brazil on July 1994. To add to this,

before January 1999 there was a crawling peg regime for the exchange rate

in Brazil, that is a regime that allows depreciation or appreciation to happen10

gradually, i.e., the monthly change on the BRL/USD exchange rate was almost

constant. It was only in January 1999 that the floating exchange rate was

adopted in Brazil, even though this regime was used in the United States since

the 1970s (Prates, 2015). This means we don’t have as much data for statistical

model training as when predicting exchange rates between other currencies.15

Economic theories that try to explain the fluctuation of future exchange rates

have existed at least since the 1970s, but as shown by Meese and Rogoff (1983),

the use of these theories alone don’t seem to produce better out-of-sample pre-

dictions than a random walk, and several studies on the literature reached the

same conclusion. But when taking into account the use of machine learning20

methodologies, an approach that keeps growing in the field of forecasting in

economics, combined with the fundamental theories, good and useful results

can be obtained for the out-of-sample predictions (Amat et al., 2018).

Machine learning is an area of statistics that basically consists of the appli-

cation of statistical models that are more flexible and computationally heavy25

than traditional models such as a linear regression, which generally delivers

better results. In the case of exchange rate forecasting, we can use traditional

fundamental theories, such as monetary and Taylor rule models, which states

that the exchange rate change depends on variables like money, output, price

level and interest rates, and combine them with machine learning models like30

support vector machine (SVM), random forest (RF) and regression models with

shrinkage combined with splines. This has proved to produce great forecasting

results even for monthly predictions (Zhang and Hamori, 2020).

What distinguishes this paper from previous studies is that we focus on the

2



specific exchange rate between BRL and USD, and apply some tests not used35

very much in the literature, such as the use of country variables as separate

variables in models, and the not use of logarithm on the variables. We also use

all the aforementioned fundamental theories and machine learning models with

the application of cross-validation on out-of-sample predictions to find the best

possible estimation for parameters and to obtain the best results.40

This paper used the software R (R Core Team, 2021) for all the computational

implementation. This software allows the use of several packages or libraries that

include all the mentioned machine learning models: SVM (Meyer et al., 2021),

RF (Liaw and Wiener, 2002) and shrinkage methods (Friedman et al., 2010).

Another advantage of R is that there are several packages that help to ob-45

tain the data we need from databases from both the United States and from

Brazil, this packages along with the data are described in Section 2, on Section

3 we explain the fundamental models, Section 4 describes the machine learning

methods we used, Section 5 describes the methodologies we used to evaluate and

compare models, Section 6 show the results obtained and Section 7 summarizes50

the main conclusions of this study.

2. Data

The data used were taken from several places. All data describe monthly

frequency. For the data referent to the United States, it was all taken from the

Federal Reserve Economic Data (FRED), using the package fredr (Boysel and55

Vaughan, 2021) in R. Brazil data was more difficult to obtain. We used pack-

ages rbcb (Freitas, 2021) and sidrar (Siqueira, 2021) to obtain data from the

Brazilian Central Bank (BCB) and Sistema IBGE de Recuperação Automática

(SIDRA) respectively. SIDRA belongs to the Instituto Brasileiro de Geografia e

Estat́ıstica (IBGE). Furthermore, we also extracted some data from Bloomberg,60

in which they credited the BCB, the World Bank Group (WBG) and the In-

ternational Monetary Fund (IMF) as sources as well. The exchange rates were

obtained using package ipeadatar (Gomes, 2021), to get data from Ipeadata,
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which is a database from the Instituto de Pesquisa Econômica Aplicada (IPEA),

a public foundation linked to the Ministry of Economy of Brazil. The extracted65

data are from the period ranging from December 1998 to April 2020 (May 2020

for the exchange rate), the initial period is right before Brazil adopted a floating

exchange rate and the final period is when there was a methodology change on

the M1 money stock for the United States (see Figure 1), along with unfore-

seen economic impacts that affected other variables caused by the COVID-1970

pandemic (Pak et al., 2020). Data are described in Table 1.

Figure 1: Time series of the M1 money stock of the United States, which shows a huge jump

on May 2020

Source: Board of Governors of the Federal Reserve System (US), M1 [M1NS], retrieved

from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/M1NS,

October 20, 2021

Table 1: Data description

Variable Notation Data Source

Exchange Rate e Exchange Rate (real/dollar) Ipeadata

Interest Rate

(Selic / Federal Funds)
i

Selic Rate /

Federal Funds Effective Rate

BCB (Brazil) /

FRED (USA)

Money Stock (M1) m

The amount of money in circulation

in notes, coin, current accounts, and

deposit accounts transferable by cheque

BCB/Bloomberg (Brazil) /

FRED (USA)

Output (IPI) y

Industrial Production Index -

The index which shows the growth rates

in different industry groups

WBG/Bloomberg (Brazil) /

FRED (USA)

Price Level /

Price Index (IPCA / CPI)
π

Índice Nacional de Preços ao Consumidor Amplo /

Consumer Price Index

SIDRA (Brazil) /

FRED (USA)

Price Level /

Price Index (PPI)
π Producer Price Index

IMF/Bloomberg (Brazil) /

FRED (USA)
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The output gap ỹ, which is required for Taylor rule models, was obtained

by calculating the potential output via the Hodrick-Prescott filter, following

Molodtsova and Papell (2009) and Zhang and Hamori (2020). The filter was cal-

culated using package mFilter (Balcilar, 2019) in R. For variables with seasonal75

components, we applied our own seasonal adjustment using package seasonal

(Sax and Eddelbuettel, 2018).

We used the end of month exchange rate rather than the monthly average

exchange rate. The first reason for this is that, as Zhang and Hamori (2020)

mention, the end of month exchange rate is more often used in the literature, and80

second is that Engel et al. (2019) says that it is highly possible that changes in

the monthly average exchange rate are serially correlated, and this could create

problems.

3. Exchange rate models

The response variable that we are trying to predict is the exchange rate85

between BRL and USD, we will call this variable e. There are several basic

methods used to predict the exchange rate, they are based on macroeconomic

fundamentals and have been used in the literature for forecasting. Recently,

these methods are being used in combination with machine learning models that

are flexible enough to capture the complex relationship between the exchange90

rate and fundamentals. Following Colombo and Pelagatti (2020), we used an

error correction model with the following notation to represent this relationship:

∆et+1 = f(et,Xt) + ϵt+1, (1)

where ∆et+1 is the difference between the exchange rate on period t + 1

and period t, i.e., ∆et+1 = et+1 − et, f() is an unknown function to estimate,

which will be done by the machine learning models, ϵt+1 represents an error, and95

Xt is a vector containing the variables from the fundamentals which identify

different models. We have variables m, y, π and i, which respectively represent
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money, output, price level and interest rate. This paper considered the following

fundamental models:

• Standard monetary model: Xt = [m̂t, ŷt];100

• Monetary model with sticky prices: Xt = [m̂t, ŷt, π̂t];

• Monetary model with sticky prices and Uncovered Interest Parity (UIP)

deviations: Xt = [m̂t, ŷt, π̂t, ît];

• Taylor rule model: Xt = [ˆ̃yt, π̂t, ît], where ỹ defines the output gap, cal-

culated using the Hodrick-Prescott filter to obtain the potential output.105

The “hat” on the variables represent the differential between the value of the

variable for the United States and for Brazil, i.e., for example m̂t = mUS
t −mBR

t .

This is the standard way in the literature to insert the variables in the models,

but we also tested using the variables for the countries as separate variables,

i.e., mUS
t and mBR

t as two different variables in a model. Another test that we110

did was to use the natural logarithm of the variables (which is the standard in

the literature), or not use any logarithm.

Another testing we did was use the exchange rate et+1 as the response vari-

able instead of the difference ∆et+1 = et+1 − et, which is the standard in the

literature, but we reached the conclusion that using the difference variable al-115

ways produces the better results.

Following this, we used seven different fundamental models that will be

referenced on Section 6, because we tested two different variables as price level

as indicated on Section 2, these models are:

• 1. Standard monetary model: Xt = [mt, yt] - M1 and IPI;120

• 2. Monetary model with sticky prices: Xt = [mt, yt, πt] - M1, IPI and

CPI;

• 3. Monetary model with sticky prices and UIP deviations: Xt = [mt, yt, πt, it]

- M1, IPI, CPI and Interest Rates (Selic / Federal Funds);
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• 4. Taylor rule model: Xt = [ỹt, πt, it] - output gap, CPI and Interest125

Rates;

• 5. Monetary model with sticky prices: Xt = [mt, yt, πt] - M1, IPI and

PPI;

• 6. Monetary model with sticky prices and UIP deviations: Xt = [mt, yt, πt, it]

- M1, IPI, PPI and Interest Rates;130

• 7. Taylor rule model: Xt = [ỹt, πt, it] - output gap, PPI and Interest

Rates.

Models 2-4 use CPI as price level, while models 5-7 use PPI.

4. Machine learning models

The use of machine learning in economics and econometrics is something135

that is constantly growing, which lead to Athey and Imbens (2019) to write a

paper about why to use these methods in this field of study, and introducing

some of the most used models and techniques and the differences between them.

In this Section we will introduce and explain the basics of the models used in

this study.140

4.1. Support Vector Machines

First proposed by Boser et al. (1992) as a supervised algorithm for classifi-

cation that creates a hyperplane that maximizes the distance between classes of

observations. Their algorithm evolved into what is known today as Support Vec-

tor Machines (SVMs), which can be used both for classification and regression145

problems. Since in this study our response variable (exchange rate) is numeric,

we are interested in the regression application.

The basic SVM is discussed first with a linear model, and with the use of

kernel functions it is extended for non-linear models (Cortes and Vapnik, 1995).

Suppose we have the training data {(X1, y1), ..., (Xn, yn), where Xi is a vector150

of the features, and yi is the response variable, then we have
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f(x) = ω⊤Xi + b, (2)

where ω is a vector of weights, and b is a constant often referred to as the bias.

Then a regression SVM is possible if we consider the insensitive loss function

|ξ| =
∣∣y − f(x)

∣∣ =

0 if

∣∣y − f(x)
∣∣ ≤ ε∣∣y − f(x)

∣∣− ε otherwise

, (3)

where ε is a parameter for the SVM to estimate. The main objective of the

SVM is to find the function f(x) while minimizing the value of the loss function,155

thus, the model can be written as the following optimization problem

min
1

2
∥ω∥2 + C

 n∑
i

ξ∗i +

n∑
i

ξi

 , (4)

subject to

yi − ω⊤Xi − b ≤ ε+ ξi, (5)

ω⊤Xi + b− yi ≤ ε+ ξ∗i , (6)

ξi ≥ 0, ξ∗i ≥ 0, (7)

where C is another parameter, usually called the cost (of constraints viola-

tion), which determines the trade-off between the flatness of the function f(x)

and the tolerance of the deviations larger than ε, this parameter can be esti-160

mated with cross-validation. We can also write this problem in terms of the

Lagrangian, with αi, α
∗
i being the Lagrangian multipliers:

max−1

2

n∑
i,j

(αi − α∗
i )(αj − α∗

j )k(xi, xj) +

n∑
i

yi(αi − α∗
i )− ε

n∑
i

(αi − α∗
i ), (8)

subject to
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n∑
i

(αi − α∗
i ) = 0, (9)

αi, α∗
i ∈ [0, C]. (10)

In Equation 8, k(xi, xj) is the kernel function, which can be determined

arbitrarily. In this paper we used the radial basis function, which was predomi-165

nantly used in the literature of exchange rate prediction, and proved to generate

the best results in our research as well. It can be expressed as:

k(xi, xj) = exp (−σ
∣∣xi − xj

∣∣2), (11)

where σ is another parameter we can estimate by cross-validation. We also

used another parameter, ν, which can regulate the proportion of the number

of support vectors you desire to keep in your solution with respect to the total170

number of samples in the dataset. The use of this parameter means we used

an SVM called nu-regression, and this estimates automatically (optimally) the

parameter ε. So we end up with a vector of parameters θ = {C, σ, ν}, and did

a grid search cross-validation to find the best possible values of them.

4.2. Random Forests175

Random forests (RF) were introduced by Breiman (2001) as an extension

of regression/classification trees (Breiman et al., 1984), which are based on

decision trees. Each individual regression tree is built from the original sample

by bootstrap resampling and is grown based on m randomly selected features.

A tree is created by a iterative process that simply partitions the data in several180

regions by doing a recursive binary splitting. In each step the predictor and its

cutpoint are selected such that splitting the space into new regions leads to the

greatest possible reduction in the residual sum of squares, and this process is

repeated until a stopping criterion is reached. The prediction of the tree will be

the average of the response variable on the region the observation is assigned.185
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A regression RF is an ensemble learning method that builds a lot of regression

trees and evaluates the overall performance of them together by averaging their

predictions, by doing this we avoid the impact of outlier trees because the volume

of trees we are building is very large. Parameter m can then be estimated by

cross-validation to find the best possible value. Figure 2 shows the idea behind190

a RF.

Figure 2: Random Forest structure

Source: Random Forest Regression (Chakure, 2019)

Suppose we have the training data {(X1, y1), ..., (Xn, yn)}, where Xi is a

vector of the features, and yi is the response variable. We want to find a function

f : X → Y . If M is the total number of features, then what RF does is:

• Selects n observations randomly from the original sample, with replace-195

ment, which forms a bootstrap sample;

• For each subset, selects m random features from the overall M features.

A prediction is produced for each tree, and the RF prediction is the average

of these predictions. The number of trees in the forest is also a parameter that

10



can be changed, but as the standard in the literature is 500, we decided to200

maintain this number.

4.3. Regularized regression splines

A standard linear regression with n observations and j features is represented

by

yi = β0 + β1xi1 + ...+ βjxij + ϵi, (12)

with βk, k = 0, 1, ..., j being the regression parameters and ϵi ∼ N(0, 1),205

i = 1, ..., n, with y and xk representing the response and explanatory variables,

respectively. The traditional method to estimate the regression parameters is

least squares by minimizing the sum of squares error (SSE)

SSE =

n∑
1

(yi − β0 − β1xi1 − ...− βjxij)
2. (13)

When we have a large number of covariates, the least squares estimator

doesn’t have good predictive properties, so one common form of dealing with210

this is through regularization, which serves as an alternative to omitting pre-

dictors. Also known as shrinkage methods, they downweight the contribution

of predictors by shrinking coefficient estimates towards zero, the most known

ones are the Ridge and lasso (least absolute shrinkage and selection operator)

regressions. They add a penalty term to Equation 13 for the minimization215

process.

SSE + λ

k∑
j=1

β2
j , (14)

SSE + λ

k∑
j=1

∣∣βj

∣∣ . (15)

We find the parameters by minimizing Equation 14 for Ridge regression and

Equation 15 for lasso regression. λ is a parameter which we find the best value

by doing cross-validation grid search, and if λ = 0 we just have a standard
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least squares linear regression. Using these methods allows us to introduce220

interactions between the predictors, which increases significantly the number of

covariates in the model, and we also can use polynomial terms and combine it

with the use of splines, which we will discuss next.

Splines allows us to fit separate polynomial regressions for different regions

of the feature space. The most common spline and the one we used following225

Colombo and Pelagatti (2020) is the cubic spline. Splines require us to input

a parameter K, which is the number of knots, which is a split point in the

data, these split points are selected by the quantiles of the data. In general, a

cubic spline with K knots uses K + 4 parameters. After some testing we chose

K = 2, which produced good results while maintaining a reasonable number of230

parameters. There are several different basis functions that can be applied to

splines, and we chose the B-spline, which is a computationally convenient basis

for splines. This means we have the following regression equation (if we had

only one feature x)

yi =

3∑
j=0

βjx
j
i +

2∑
k=1

βk+3(xi − ξk)
3
+ + ϵi, (16)

where ξk represent knot K, and (xi − ξk)
3
+ = (xi − ξk)

3, if x > ξ and235

(xi − ξk)
3
+ = 0, if x ≤ ξ. So, in the end we have a regression that looks just

like a linear model, where the calculation is just linear multiple regression. The

generalization for more features is simple, but the number of parameters in

the model keeps increasing, specially when considering interactions between the

variables, which we did.240

In this study, we combined the regularization techniques with splines to

train regression models with interactions between the variables and predict the

exchange rates.

5. Methodologies

Following Zhang and Hamori (2020), Colombo and Pelagatti (2020) and245

most of the literature, this paper used a rolling window analysis for the one-
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period ahead forecasting, this means the estimation runs iteratively, shifting a

fixed window size by one period in each forecast. For example, if we set the

window size as 240 months (periods), the models will use the training data from

period 1 to 240 to predict period 241, then data from period 2 to 241 to predict250

period 242, and so on. This is repeated until the end of the time series.

As mentioned on Section 2, we used data from our predictors from December

1998 to April 2020, and to May 2020 for the exchange rate. This means we have

a total of 257 periods (months) to use in our models. We decided to use three

different sizes for the rolling window, always using a integer number of years,255

these numbers were: 240 (20 years), 228 (19 years) and 216 (18 years), this

means for each of these we have 17, 29 and 41 periods for prediction, respectively.

Table 2 shows the three possible partitions mentioned.

Table 2: Possible partitions of training and test

Training Range Months Test Range Months

Jan/1999 - Dec/2018 240 Jan/2019 - May/2020 17

Jan/1999 - Dec/2017 228 Jan/2018 - May/2020 29

Jan/1999 - Dec/2016 216 Jan/2017 - May/2020 41

Next we will talk about the methodologies and statistical tests necessary to

our evaluation of results.260

5.1. Random walk

In the context of one-period-ahead time series forecasting, the random walk

without drift model is defined by assuming the forecast of a variable y on period

t is going to be equal to the observed value of the variable on period t− 1, i.e.,

the random walk forecast is defined by:265

ŷt = yt−1, (17)

it means that the model assumes that, at each point in time, the series

merely takes a random step away from its last recorded position, with steps
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whose mean value is zero. In others words, it predicts that all future values will

equal the last observed value. (Nau, 2014)

This also means that following Equation 19, the RMSE of the random walk270

forecasting is given by:

RMSERW =

√√√√ 1

n

n∑
t=1

(yt−1 − yt)2, (18)

which means we must have an observation y0 that is the observed value of

y for a period before our predictions start.

5.2. Root Mean Squared Error

The root mean squared error (RMSE) is a measure of the quality of an275

estimator or forecast. According to Colombo and Pelagatti (2020), the RMSE

criterion is by far the most used approach for evaluating the performance of

forecasts. The RMSE is defined as:

RMSE =

√√√√ 1

n

n∑
t=1

(ŷt − yt)2, (19)

where n is the sample size, ŷi represents forecast observations and yi repre-

sents the observed values of a variable.280

5.3. Diebold-Mariano Test

The Diebold-Mariano (DM) test was first proposed by Diebold and Mariano

(1995), with the objective of comparing predictive accuracies of two forecasts.

Suppose we have the actual values for a variable of interest: {yt; t = 1, ..., T}.

Now suppose we also have two forecasts for this variable: {ŷ1t; t = 1, ..., T} and285

{ŷ2t; t = 1, ..., T}. We can define the forecast errors as:

ϵit = ŷit − yt, i = 1, 2. (20)

Then, we can associate a loss function with the forecast errors, denoted by

g(ϵit). To be a loss function, the function g(.) must:

14



• Take the value zero when no error is made;

• Never be negative;290

• Increase in size as the error.

The standard and most used function as g(ϵit) is the squared-error loss,

defined by:

g(ϵit) = ϵ2it. (21)

Then we define the loss differential between the two forecasts as:

dt = g(ϵ1t)− g(ϵ2t). (22)

Now we can set the hypothesis of the test, if we want to show that ŷ2t has295

a better accuracy than ŷ1t:

H0 : E(dt) = 0 ∀t

H1 : E(dt) > 0.
(23)

The test stastistic is defined by:

DM =
d̄√
s2

n

, (24)

where d̄ is the sample mean of dt, s
2 represents an estimated variance of dt

and n is the sample size. Under the null hypothesis, the test statistic DM is

asymptotically distributed as N(0, 1), which means it’s very simple to obtain300

p-values from the normal distribution.

A modified version of the DM test was then proposed by Harvey et al. (1997)

with a correction that uses an approximately unbiased estimator of the variance

of d̄, which leads to the modified DM test statistic:

DM ∗ =

√
n+ 1− 2h+ n−1h(h− 1)

n
DM , (25)

15



where h denotes the horizon forecast, n is the sample size and DM is the305

original DM test statistic from Equation 24. Since in this paper we only utilize

the forecast horizon h = 1, we can sum up Equation 25 in:

DM ∗ =

√
n− 1

n
DM =

d̄√
s2

n−1

. (26)

The modified DM test is implemented in the function dm.test of package

forecast (Hyndman et al., 2021) in R. The function uses by default the squared-

error loss function from Equation 21, which we chose to use in this study.310

5.4. Binomial test

According to Colombo and Pelagatti (2020), an alternative approach to

evaluate the performance of models when predicting exchange rates focuses on

whether they can predict the direction of change of the exchange rate, i.e., if it

is going to increase or decrease from one period to another. Since the exchange315

rate is from a financial nature, the direction of change can be a useful measure

for investment strategies. Therefore, we can measure the proportion of correct

forecasts for direction of change, and statistical significance can be measured

by an exact binomial test. Regardless of the number of increasing or decreas-

ing observations, if we choose at random the direction of change for them, the320

expected proportion of correct guesses is π = 0.5, so we can set up a binomial

test that follows as

H0 : π = 0.5

H1 : π > 0.5.
(27)

Since it is an exact test from the binomial distribution, the p-value is straight-

forward to calculate from it. If X ∼ B(n, 0.5), and in the sample size of n we

have k successes, the p-value for our test is calculated by325

p =

n∑
i=k

P (X = i) =

n∑
i=k

(
n

i

)
0.5n. (28)
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And with that we can test if a direction of change prediction of a model is

statistically better than a random one.

6. Results

On Section 2 we mentioned that we tested using the a variable for the differ-

ential between the countries for each predictor (we’ll call it difference models),330

or the variable for each country as separate ones for the models (we’ll call it

full models). Also, we tested using the natural logarithm ln(.) on each variable

(which is the standard on the literature), or not using it.

For the SVM models we obtained good results from difference models, with

and without the logarithm application on the variables, Tables 3-5 indicate the335

results of the log-difference SVM models and Tables 6-8 show the results of the

difference SVM models (without logarithm application).

Table 3: SVM prediction for 17 months with log-difference data. Models are referent to those

presented on Section 3. Root mean squared error for the random walk prediction (reference

value) is presented above header. Significant p-values (< 0.05) are bolded.

17 months prediction - RW RMSE = 0.0550

Model RMSE DM Test p-value

Proportion

Direction of

Change

Binomial

Test p-value

1. 0.0531 2.021 0.030 0.588 0.314

2. 0.0525 1.965 0.033 0.647 0.166

3. 0.0511 1.214 0.121 0.588 0.314

4. 0.0490 1.892 0.038 0.765 0.026

5. 0.0487 1.389 0.092 0.588 0.314

6. 0.0483 1.322 0.102 0.647 0.166

7. 0.0422 1.381 0.093 0.529 0.500

For the Random Forest models the best results were from the full models

with logarithm variables. Tables 9-11 show these results.
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Table 4: SVM prediction for 29 months with log-difference data. Models are referent to those

presented on Section 3. Root mean squared error for the random walk prediction (reference

value) is presented above header. Significant p-values (< 0.05) are bolded.

29 months prediction - RW RMSE = 0.0528

Model RMSE DM Test p-value

Proportion

Direction of

Change

Binomial

Test p-value

1. 0.0522 0.919 0.183 0.586 0.229

2. 0.0518 1.095 0.141 0.655 0.069

3. 0.0498 1.378 0.090 0.655 0.069

4. 0.0487 1.484 0.075 0.655 0.069

5. 0.0501 0.946 0.176 0.621 0.133

6. 0.0501 1.266 0.108 0.655 0.069

7. 0.0457 1.125 0.135 0.552 0.355

Table 5: SVM prediction for 41 months with log-difference data. Models are referent to those

presented on Section 3. Root mean squared error for the random walk prediction (reference

value) is presented above header. Significant p-values (< 0.05) are bolded.

41 months prediction - RW RMSE = 0.0464

Model RMSE DM Test p-value

Proportion

Direction of

Change

Binomial

Test p-value

1. 0.04511 1.872 0.034 0.659 0.030

2. 0.04548 1.506 0.070 0.634 0.059

3. 0.04550 0.905 0.185 0.683 0.014

4. 0.04318 1.253 0.109 0.585 0.174

5. 0.04395 1.105 0.138 0.512 0.500

6. 0.04544 1.010 0.159 0.610 0.106

7. 0.04173 0.978 0.167 0.439 0.734
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Table 6: SVM prediction for 17 months with difference data (without log). Models are referent

to those presented on Section 3. Root mean squared error for the random walk prediction

(reference value) is presented above header. Significant p-values (< 0.05) are bolded.

17 months prediction - RW RMSE = 0.2430

Model RMSE DM Test p-value

Proportion

Direction of

Change

Binomial

Test p-value

1. 0.2377 1.011 0.164 0.588 0.314

2. 0.2384 0.921 0.185 0.529 0.500

3. 0.2375 0.546 0.296 0.471 0.500

4. 0.2279 0.664 0.258 0.471 0.500

5. 0.2336 1.670 0.057 0.588 0.314

6. 0.2339 1.363 0.096 0.588 0.314

7. 0.2035 1.312 0.104 0.706 0.073

Table 7: SVM prediction for 29 months with difference data (without log). Models are referent

to those presented on Section 3. Root mean squared error for the random walk prediction

(reference value) is presented above header. Significant p-values (< 0.05) are bolded.

29 months prediction - RW RMSE = 0.2211

Model RMSE DM Test p-value

Proportion

Direction of

Change

Binomial

Test p-value

1. 0.2176 1.315 0.100 0.690 0.032

2. 0.2180 1.343 0.095 0.655 0.069

3. 0.2168 1.530 0.069 0.586 0.229

4. 0.2153 0.757 0.228 0.448 0.645

5. 0.2123 1.488 0.074 0.552 0.355

6. 0.2138 2.014 0.027 0.690 0.032

7. 0.2020 0.897 0.189 0.448 0.645
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Table 8: SVM prediction for 41 months with difference data (without log). Models are referent

to those presented on Section 3. Root mean squared error for the random walk prediction

(reference value) is presented above header. Significant p-values (< 0.05) are bolded.

41 months prediction - RW RMSE = 0.1909

Model RMSE DM Test p-value

Proportion

Direction of

Change

Binomial

Test p-value

1. 0.1891 0.853 0.199 0.561 0.266

2. 0.1892 1.128 0.133 0.659 0.030

3. 0.1898 0.669 0.254 0.585 0.174

4. 0.1878 0.419 0.339 0.439 0.734

5. 0.1858 1.889 0.033 0.707 0.006

6. 0.1871 1.342 0.094 0.707 0.006

7. 0.1749 0.744 0.231 0.512 0.500

Table 9: Random forest prediction for 17 months with log-full data. Models are referent

to those presented on Section 3. Root mean squared error for the random walk prediction

(reference value) is presented above header. Significant p-values (< 0.05) are bolded.

17 months prediction - RW RMSE = 0.0550

Model RMSE DM-test p-value

Proportion

Direction of

Change

Binomial

Test p-value

1. 0.0520 0.602 0.278 0.529 0.500

2. 0.0514 0.653 0.261 0.529 0.500

3. 0.0521 0.517 0.306 0.529 0.500

4. 0.0484 0.849 0.204 0.529 0.500

5. 0.0513 0.782 0.223 0.529 0.500

6. 0.0520 0.690 0.250 0.529 0.500

7. 0.0482 0.828 0.210 0.529 0.500
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Table 10: Random forest prediction for 29 months with log-full data. Models are referent

to those presented on Section 3. Root mean squared error for the random walk prediction

(reference value) is presented above header. Significant p-values (< 0.05) are bolded.

29 months prediction - RW RMSE = 0.0528

Model RMSE DM Test p-value

Proportion

Direction of

Change

Binomial

Test p-value

1. 0.0499 0.696 0.246 0.621 0.133

2. 0.0492 0.905 0.187 0.552 0.355

3. 0.0510 0.468 0.322 0.621 0.133

4. 0.0496 0.628 0.268 0.621 0.133

5. 0.0496 0.879 0.193 0.655 0.069

6. 0.0515 0.366 0.359 0.552 0.355

7. 0.0496 0.745 0.231 0.552 0.355

Table 11: Random forest prediction for 41 months with log-full data. Models are referent

to those presented on Section 3. Root mean squared error for the random walk prediction

(reference value) is presented above header. Significant p-values (< 0.05) are bolded.

41 months prediction - RW RMSE = 0.0464

Model RMSE DM Test p-value

Proportion

Direction of

Change

Binomial

Test p-value

1. 0.0444 0.580 0.283 0.537 0.377

2. 0.0436 0.846 0.201 0.561 0.266

3. 0.0446 0.577 0.284 0.634 0.059

4. 0.0433 0.702 0.243 0.659 0.030

5. 0.0446 0.602 0.275 0.659 0.030

6. 0.0453 0.364 0.359 0.610 0.106

7. 0.0438 0.675 0.252 0.585 0.174
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For regularized regression splines, the best results were from the lasso re-340

gression, using the differential models with logarithm variables. Tables 12-14

show these results.

Table 12: Lasso regression with splines prediction for 17 months with log-difference data.

Models are referent to those presented on Section 3. Root mean squared error for the random

walk prediction (reference value) is presented above header. Significant p-values (< 0.05) are

bolded.

17 months prediction - RW RMSE = 0.0550

Model RMSE DM-test p-value

Proportion

Direction of

Change

Binomial

Test p-value

1. 0.0531 2.265 0.019 0.765 0.026

2. 0.0533 0.702 0.246 0.588 0.314

3. 0.0534 0.675 0.255 0.588 0.314

4. 0.0522 0.908 0.189 0.588 0.314

5. 0.0529 0.896 0.192 0.588 0.314

6. 0.0535 1.052 0.154 0.588 0.314

7. 0.0526 0.769 0.227 0.588 0.314

Results for all the combinations of the different types of models that are not

shown in this paper can be available upon request.

Another interesting way to see the results is by plotting some of the predic-345

tions alongside the real values of the response variable, and the random walk

prediction. It’s a very good way to compare the machine learning models and

see how they’re different in forecasting. Figure 3 shows this graphic for the

SVM model for 41 months prediction and log-difference data, shown in Table 5.

We can see that model 1, which is the standard monetary model, does a more350

conservative prediction, being almost constant above the random walk predic-

tion. This was enough to be the most significantly better model in comparison

to the random walk, while the Taylor rule model 7 has more risky predictions,

getting a lower RMSE but not having a greater value for the DM test.
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Table 13: Lasso regression with splines prediction for 29 months with log-difference data.

Models are referent to those presented on Section 3. Root mean squared error for the random

walk prediction (reference value) is presented above header. Significant p-values (< 0.05) are

bolded.

29 months prediction - RW RMSE = 0.0528

Model RMSE DM Test p-value

Proportion

Direction of

Change

Binomial

Test p-value

1. 0.0519 1.451 0.079 0.621 0.133

2. 0.0513 1.043 0.153 0.621 0.133

3. 0.0513 1.061 0.149 0.621 0.133

4. 0.0505 0.968 0.171 0.621 0.133

5. 0.0509 1.270 0.107 0.621 0.133

6. 0.0516 1.325 0.098 0.621 0.133

7. 0.0505 0.992 0.165 0.621 0.133

Table 14: Lasso regression with splines prediction for 41 months with log-difference data.

Models are referent to those presented on Section 3. Root mean squared error for the random

walk prediction (reference value) is presented above header. Significant p-values (< 0.05) are

bolded.

41 months prediction - RW RMSE = 0.0464

Model RMSE DM Test p-value

Proportion

Direction of

Change

Binomial

Test p-value

1. 0.0458 1.272 0.105 0.634 0.059

2. 0.0454 0.857 0.198 0.634 0.059

3. 0.0456 0.997 0.162 0.634 0.059

4. 0.0449 0.801 0.214 0.634 0.059

5. 0.0454 0.842 0.202 0.634 0.059

6. 0.0454 1.415 0.082 0.634 0.059

7. 0.0439 1.731 0.046 0.683 0.014
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Figure 3: SVM prediction for 41 months, referent to Table 5, SVM1 and SVM7 represents

model 1 and model 7 of the table respectively. RW represents the random walk prediction.
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Figure 4 show the graphic for the RF model for 41 months prediction and355

log-full data, shown in Table 11, we see the prediction for model 4, which is a

Taylor rule model. It is a very erratic prediction that had a lower RMSE than

the random walk, but the DM test didn’t find it statistically significant for a

level of 5%.

Figure 4: RF prediction for 41 months, referent to Table 11, RF4 represents model 4 of the

table. RW represents the random walk prediction.

Figure 5 show the graphic for the Lasso regression model with splines for360

41 months prediction and log-difference data, shown in Table 14, we see the

prediction for model 7, which is a Taylor rule model. It is an almost constant

prediction with positive values, apart for two negative value predictions in the

middle. It had a lower RMSE than the random walk, and was one of the few

cases for the regularized regressions that the DM test found it to be statistically365

better for a level of 5%.
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Figure 5: Lasso regression with splines prediction for 41 months, referent to Table 14, SP7

represents model 7 of the table. RW represents the random walk prediction.
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7. Conclusion

This study combined the use of fundamental economical theories with mod-

ern machine learning techniques to forecast exchange rates between BRL and

USD. The results found were very satisfactory, specially when considering the370

RMSE of the models, which was always lower than the one from the random

walk model for the models presented, even though these difference wasn’t always

proven statistically significant through the DM test. The direction of change

also obtained very good results, with the proportion of correct predictions con-

sistently above the null of 50%, and several proven statistically significant by375

the binomial test.

Between the machine learning models, the SVM models were the ones with

the most consistent results, with several p-values below 0.05 and most of them

around 0.1. Among the fundamental theories, the Taylor rule model using PPI

as the price level was usually the one with lower RMSE for all the machine380

learning models, but not always the one that obtained significant p-values for

the statistical tests.

Our results robustness is verified by having the out-of-sample predictions

done with three different sample sizes for each model, with consistent and similar

results. Overall, the results were very satisfactory and coherent when comparing385

to similar studies for exchange rates of other currencies, such as Zhang and

Hamori (2020) and Colombo and Pelagatti (2020), and sheds a light in the

exchange rates for a currency that is not addressed often in this field.
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