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a

Abstract

This paper proposes a model of sovereign default that features interest rate multiplic-
ity driven by rollover risk. Our core mechanism shows that the possibility of a rollover
crisis by itself can lead to high interest rates, which in turn reinforces the rollover risk.
By exploiting complementarity between the traditional notions of slow- and fast-moving
crises, our model generates a rich simulated dynamics that features frequent defaults and
a volatile bond spread even in the absence of shocks to fundamentals. In the presence
of risky income, our mechanism amplifies the dynamics of debt and spreads relative to
model benchmarks where equilibrium multiplicity relies on the underlying shocks to in-
come.

JEL Classification Numbers: E44, F34

Keywords: Sovereign default, self-fulfilling crises



1 Introduction

Sovereign default crises occur routinely across the emerging and, since recently, also ad-
vanced countries, causing significant disruption to economic activity. Economists have
long debated whether such events are due to fundamental factors, or can governments
find themselves on the brink of bankruptcy merely due to fluctuations in beliefs. The
literature on self-fulfilling debt crises has focused on two main sources of multiplicity
of equilibria in sovereign debt markets: the interest rate risk as in Calvo (1988), and the
rollover risk as in Cole and Kehoe (2000). Existing studies are based on one source of mul-
tiplicity only, suggesting that they are seen as substitutes rather than complements. In this
paper, we combine both sources of multiplicity and demonstrate how they may comple-
ment each other. Specifically, the higher probability of a rollover crisis in the future leads
to higher interest rates, which in turn leads to higher probability of a rollover crisis. At
the same time, a high interest rate increases the probability of a rollover crisis, which in
turn leads to high interest rates. We show that a rich dynamics of the bond spread can be
generated in a quantitative model based on this feedback loop alone, without any actual
shocks to fundamentals.

This paper is motivated by the fact that the assumptions behind both sources of multi-
plicity can be adopted jointly. The multiplicity in Calvo (1988) emerges from a restriction
in the borrower action space, with the borrower choosing current debt instead of debt
at maturity.1 The amount to be repaid in the future is therefore market-determined and
subject to self-fulfilling crises. High interest rates make default more likely, which in turn
leads to high interest rates.2 On the other hand, the multiplicity in Cole and Kehoe (2000)
emerges from a timing assumption, in which the borrower issues new debt before making
its default decision on maturing debt. In this case, if creditors expect the borrower to de-
fault on the previously issued and maturing debt, the price of newly issued debt is zero,
indeed pushing the country to default on the maturing debt.3 In this paper, we explore
the consequences of combining the two assumptions. The government chooses current
debt and decides whether to default or not on maturing debt after issuing new debt.

We begin our analysis by introducing a simple 3-period model where the borrower issues

1Ayres et al. (2018).
2This source of multiplicity has been explored in Aguiar and Amador (2020), Lorenzoni and Werning

(2019), and Ayres et al. (2018, 2023).
3This source of multiplicity has been explored in Conesa and Kehoe (2017), Bocola and Dovis (2019),

Aguiar et al. (2022), and Bianchi and Mondragon (2022).
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Calvo type debt in the first period and faces a Cole-Kehoe style rollover risk in the sec-
ond period. Without any income fluctuations and for a risk-neutral borrower, we show
analytically that this setup can result in an interest rate multiplicity. If creditors expect
a rollover crises in period 2, they will charge a higher interest rate on the debt issued in
period 1. The larger debt payments in period 2 in turn will push the borrower to default
in case a rollover crisis occurs. We then show numerically that extending this setup to
the case of risk-averse borrower, or adding income shocks, results in a wider interval of
interest rate multiplicity and more overlapping interest rate schedules.

Guided by the results from our stylized 3-period model, we proceed to test the comple-
mentarity between the two notions of multiplicity in a more typical infinite horizon setup
with one-period debt. We continue with the assumption of no income shocks; hence the
only source of risk comes from the two types of sunspot variables that drive the rollover
and interest rate risk sentiments. We find that for any parameterization, there exists a
specific probability of a rollover crisis that results in a non-trivial simulated dynamics
stemming from the interaction between the two types of multiplicity. Specifically, every
simulated path starts with a “slow moving debt crisis", where the borrower’s debt ac-
cumulation is propelled by a potential bad realization of the Calvo-style sunspot. Then,
faced with a high debt and high interest rate burden, the borrower lands in the Cole-
Kehoe style crisis zone and remains vulnerable to a rollover crisis which ultimately causes
him to default. We show that the model simulations produce non-trivial key statistical
moments, with high mean and standard deviation of the bond spread for any targeted
level of debt. A comparative statics exercise reveals that by varying the probability of the
Calvo-type sunspot, we can obtain different combinations of these moments.

Then, we augment the model with income shocks and show that the feedback loop be-
tween both types of multiplicity amplifies the dynamics of debt crises relative to the
benchmark models that admit each one of them separately. In particular, the model with
both sources of multiplicity attains the high average spread as in the pure Cole-Kehoe
setup, and simultaneously generates a high standard deviation of the spread. By con-
trast, the pure Cole-Kehoe variant of the model features high average spread with zero
volatility, while the pure Calvo variant can produce positive combinations of the two
moments, but their magnitude is less than half as high as in the baseline. The presence
of income shocks also widens the interval of probabilities of a rollover crisis for which
the two sunspots interact, relative to model that features non-fundamental shocks only.
Income shocks also allow for interesting dynamics of debt and spread that goes in both
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directions (increases and reductions). As such, the addition of income shock increases the
relevance of our core mechanism.

1.1 Literature review

This paper is closely related to the sovereign default literature with self-fulfilling debt
crises. The papers related to our work include those that assume equilibrium multiplic-
ity in the tradition of Calvo (1988): Aguiar and Amador (2020), Lorenzoni and Werning
(2019), and Ayres et al. (2018, 2023), among others, as well as those that develop mod-
els with Cole and Kehoe (2000) type rollover crises: Conesa and Kehoe (2017), Bocola
and Dovis (2019), Aguiar et al. (2022), and Bianchi and Mondragon (2022), among others.
The paper most closely related to ours is Corsetti and Maeng (2020) which also studies a
model with both types of multiplicity to understand the drivers of slow and fast occur-
ring debt crises. By contrast, our paper is interested in the quantitative potential of the
complementarity between the two sources of multiplicity. Stangebye (2020) shows that,
with long-maturity debt, beliefs about long-term performance of the economy can result
in multiplicity of fundamental equilibria.

2 Multiplicity in a three-period model

This section presents a simple three-period environment to illustrate our core mechanism.
For simplicity, we present the derivation of our main result for a risk-neutral borrower. In
the quantitative section we assume a risk averse borrower.

The borrower receives deterministic endowment y in all three periods (t = 0, 1, 2). It
has zero initial debt and can issue one-period non-contingent bonds to competitive risk-
neutral lenders. The borrower is not committed to repay the debt. In the case of default, it
is permanently excluded from international financial markets and restricted to consume
yd < y. The risk-free gross interest rate is denoted by R∗. To induce borrowing, we as-
sume the borrower has a lower discount factor than the lenders, denoted by β.

As in Cole and Kehoe (2000), we assume the borrower chooses whether to default or not
on the previously issued debt after the new debt issuance takes place. In this setting,
lenders may not roll over the debt if the lack of new borrowing pushes the borrower to
default on the old debt, which characterizes the rollover risk. As in Eaton and Gersovitz
(1981), we assume that when the bond auction takes place, the borrower moves first by
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committing to the amount of resources it wishes to raise in the current period, denoted by
b. Lenders move next and set the gross interest rate R. These assumptions generate the
interest rate multiplicity in Calvo (1988).4 For a given b, a higher R increases the probabil-
ity of default because it increases the debt service. In turn, a higher probability of default
implies a higher R, as lenders must have expected return equal to R∗ in equilibrium.

We present and solve the problem backwards. In period t = 2, the only choice for the
borrower is whether to pay the debt service on the debt issued in the previous period,
R2b2, or to default. The borrower defaults if yd > y − R2b2 and repays otherwise.

It follows that in period t = 1, if the lenders roll over the debt, the interest rate is uniquely
determined. Let’s define the threshold B̃2 ≡

(
y − yd) /R∗. For b2 ≤ B̃2, there is no default

and R2 must be equal to R∗. For b2 > B̃2, the borrower defaults for sure, so B̃2 becomes a
borrowing limit.

If lenders do not roll over the debt in t = 1, the borrower defaults if

vd
1 ≡ (1 + β)yd > y − R1b1 + βy,

where R1b1 is the debt service on the debt issued in t = 0.5 A rollover crises may happen
only if it pushes the country to default, so the borrower is subject to rollover risk only if

R1b1 > (1 + β)(y − yd). (1)

Note that a rollover crises is equivalent to setting the borrowing limit to zero, a convention
we will adopt to simplify the exposition. We can express the problem in period t = 1 as:

v1 (R1b1, sck) = max{vnd
1 (R1b1, sck) , vd

1},

in which
vnd

1 (R1b1, sck) = max
b2≤B2(R1b1,sck)

y − R1b1 + b2 + β (y − R∗b2) .

sck ∈ {0, 1} is a sunspot variable that commands the Cole-Kehoe type of market senti-
ment. If sck = 0 and condition (1) holds, a rollover crisis happens and the borrowing

4See Ayres et al. (2023).
5As in Aguiar et al. (2016), we assume the borrower does not keep the proceeds from the new bond

auction in case it defaults on the old debt.
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limit B2 (R1b1, sck) equals zero. Otherwise, B2 (R1b1, sck) = B̃2.6 In addition, note that the
condition for the rollover risk in (1) depends on R1, which gives rise to an interest rate
multiplicity. For a given b1, a higher R1 makes a rollover crises more likely. In turn, the
higher probability of a rollover crisis implies a higher R1.

We turn to the borrower problem in t = 0:

v0(sc) = max
b1≤b1

y + b1 + β ∑
sck∈{0,1}

π(sck) v1

(
R1(b1, sc)b1, sck

)
.

π(sck) denotes the probability distribution over the values that sck may take in t = 1. We
let p denote the probability of the bad sunspot, π(0) = p. The state variable sc ∈ {0, 1}
denotes the Calvo-type sunspot. In case there are multiple interest rates for a given b1

such that lenders receive expected return equal to R∗, we use the sunspot variable sc as a
device to select the interest rate. As in Ayres et al. (2023), we will focus on two extreme
cases. In the bad sunspot state, sc = 0, R1 takes the highest possible value. In the good
sunspot state, sc = 1, R1 takes the lowest possible value. Lemma 1 characterizes all the
pairs (b1, R1) such that lenders receive return R∗ in expectation.

Lemma 1 The pairs (b1, R1) in which lenders receive expected return equal to R∗ given the bor-
rower’s optimal borrowing and default strategies are:

(i) b1 ≤ (1+β)(y−yd)
R∗ ≡ B1 and R1 = R∗.

(ii) B1 ≡ (1+β)(y−yd)(1−p)
R∗ ≤ b1 ≤ (1− p)(y− yd)

(
1

R∗ +
1

(R∗)2

)
≡ B1 and R1 = R∗

1−p .

Proof: Appendix A.1

For any debt level smaller than B1, the borrower repays even if lenders do not rollover
the debt. Hence, the interest rate is unique and equal to the risk-free rate. For a level of
borrowing between B1 and B1, however, an interest rate multiplicity arises. It is notewor-
thy that, in this case, it is the rollover risk in period t = 1, rather than an income shock,
that generates multiplicity of the interest rate. In other words, for a given b1 ∈

[
B1, B1

]
,

a high or a low interest rate R1 determines whether the borrower finds itself in a Cole-
Kehoe type of crisis zone or not. Finally, if the debt level is sufficiently high, above B1,
then the interest rate is again unique and equal to the high rate R∗

1−p . At those debt levels,
the borrower defaults even if interest rates were set to R∗.

6Note that the optimal strategy for the borrower in this simple case is to set b2 = B2 (R1b1, sck).
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R∗
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1−p

B1 B1 B1

(a) High interest rate schedule R1(b1, 0)

R1

b1

R∗

R∗
1−p

B1 B1 B1

(b) Low interest rate schedule R1(b1, 1)

Figure 1: Stylized illustration of the interest rate schedules

The borrower observes sc before the bond auction and internalizes how the interest rate
will vary with respect to the amount of debt it chooses to issue. Therefore, it considers an
interest rate schedule R1(b1, sc) when choosing how much to borrow. That is, a mapping
from debt levels into unique interest rate values. Figure 1 presents a stylized illustration of
the two interest rate schedules the borrower may face. The one with high rates in Figure
1(a), R1(b1, 0), and the other with low rates in Figure 1(b), R1(b1, 1). In the following
subsection, we provide a numerical example to show that the interest rate multiplicity is
numerically significant.

2.1 Numerical example

In this subsection, we provide a simple numerical example to show that the interest rate
multiplicity characterized so far is realistic. We also extend the analysis to the case of a
risk-averse borrower and show that the result becomes even stronger. The exact deriva-
tions for this case are presented in Appendix A.2.

Consider the case of a risk-averse borrower with CRRA utility function of the form u(c) =
c1−γ

1−γ . We assume the following, fairly realistic parameterization: β = 0.7, γ = 3, y = 1,
yd = 0.95, p = 0.8, R = 1.03. Figure 2 presents the interest rate schedules, as well as
optimal debt policy for the risk-averse borrower. The solid blue line depicts the lower
(risk-free) interest rate, while the red dashed and blue dotted lines represent the upper
(risky) interest rate for the case of risk-averse and risk-neutral borrower, respectively. It
is immediate to notice that including risk aversion causes the interest rate multiplicity to
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almost double in size. The presence of this multiplicity also has real consequences for the
borrower’s actions. When the Calvo sunspot is bad, the government must reduce its debt
by around 20%, compared to the case of a good sunspot, to avoid the higher interest rate.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4
Interest rate schedules and optimal policy

Risk averse: low
Risk averse: high
Risk neutral: high
Opt. policy: good sunspot
Opt. policy: bad sunspot

Figure 2: Interest rate schedules and optimal policy

Appendix B extends this model by adding an income shock in period t = 1. It shows
that in the presence of income shock, in addition to rollover risk, the Calvo and Cole-
Kehoe frictions interact and yield a much richer interest rate multiplicity than each of
them alone. In the following Section 3 we extend the model to infinite horizon and we
show that the rollover multiplicity is quantitatively significant.

3 Infinite horizon model

In this section we develop an infinite-horizon model to study the interaction of interest
rate multiplicity with rollover risk.

3.1 Economic environment

Consider a small open economy with a benevolent sovereign that borrows internation-
ally from competitive lenders and receives stochastic endowment. Time is discrete and
indexed by t = 0, 1, 2, .... Markets are incomplete and the only asset available for trad-
ing is the one-period non-contingent bond. The risk-free gross interest rate is R∗. The
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representative household has preferences given by the expected utility of the form

E0

∞

∑
t=0

βtu(ct), (2)

where we assume the function u(·) is strictly increasing, concave and twice continuously
differentiable. The discount factor is given by β ∈ (0, 1).

Income process The endowment process consists of both transitory and permanent
components. It is given by

Yt = Γteσεt , (3)

where εt ∼ N (0, 1). The permanent component Γt evolves according to

Γt = gtΓt−1, (4)

where gt denotes the growth shock. It can assume two values, gL and gH, with gH > gL.
It follows a Markov process with the transition probability matrix given by

Π =

[
πL 1 − πL

1 − πH πH

]
, (5)

where Pr(gt+1 = gL|gt = gL) = πL and Pr(gt+1 = gH|gt = gH) = πH.

Timing The timing assumptions are the same as in Section 2. The borrower chooses
whether to default or not on the debt from previous period after the new debt issuance
(Cole and Kehoe, 2000). Similar to Calvo (1988), when the bond auction takes place,
the borrower moves first by committing to the amount of resources it wishes to raise in
the current period, b. Lenders move next and set the gross interest rate R. Shocks are
observed in the beginning of the period.

States The set of states is {A, Y, s}. A = RB denotes the total debt service to be paid
in the current period, Y is the current income, while s = {sc, sck} is a vector of sunspot
realizations corresponding to the interest rate multiplicity and rollover risk, respectively.
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Recursive problem The value function of the government involves a choice of whether
to default or not

V(A, Y, s) = max
d∈{0,1}

{
(1 − d)Vnd(a, Y, s) + dVd(Y, s)

}
The value associated with repayment is

Vnd(A, Y, s) = max
B′≤B(A,Y,s)

{
u(C) + β ∑

y′
∑
s′

Π(y′|y)p(s′|s)V
(

B′R(B′, Y, s), y′, s′
)}

subject to
C = Y − A + B′.

The value associated with default is

Vd(Y, s) = u
(

Y(1 − ϕ)
)
+ β ∑

y′
∑
s′

Π(y′|y)p(s′|s)
{

θV
(

0, y′, s′
)
+ (1 − θ)Vd

(
y′, s′

)}
where ϕ represents the fraction of income lost upon default.

As in Section 2, the borrowing limit B (A, Y, s) equals zero whenever sck = 0 and the
lack of new borrowing pushes the country to default. That happens when the following
condition is satisfied:

u(Y − A) + β ∑
y′

∑
s′

Π(y′|y)p(s′|s)V
(

0, y′, s′
)
≤ Vd(Y, s).

Definition 2 formally introduces an equilibrium in this economy.

Definition 2 A Markov Perfect Equilibrium for this economy consists of the government value
functions V(A, Y, s), Vnd(A, Y, s), Vd(Y, s); policy functions B′(A, Y, s) and d(A, Y, s); the
interest rate schedule R(B′, Y, s) and the borrowing limit function B (A, Y, s) such that:

1. Policy function d(A, Y, s) solves the government’s default-repayment problem.

2. Policy functions B′(A, Y, s) solve the government’s consumption-saving problem.

3. Interest rate schedules R(B′, Y, s) and borrowing limit functions B (A, Y, s) are such that
international lenders receive expected return equal to R∗.
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3.2 Quantification of the model

In this section, we introduce the set of parameters that will be used to evaluate our model
quantitatively. Table 1 summarizes the assumed calibration. The structural parameters in
the upper panel of the table are the same as in Aguiar et al. (2022) and will be used for all
variants of our model presented in the following sections. The lower panel of Table 1 lists
the parameters governing the bimodal income process, which are based on estimating a
Markov-switching process for growth regimes using Mexico’s GDP data in years 1980-
2021.7 The estimation technique is based on Bayesian approach as in Ayres et al. (2023).

Table 1: Parameter values assumed in the quantitative model

Parameter Meaning Value

r Risk-free rate 0.01
γ Risk aversion 2.00
β Discount factor 0.8
ϕ Income loss in default 0.03
θ Prob. of reentry 0.125

gh High growth 0.96
gl Low growth 1.02
πH Persistence of high growth 0.8
πL Persistence of low growth 0.3

3.3 No growth regimes

As a first step, we evaluate the model with no income shocks (and as a result, no regimes
whatsoever). Income is deterministic and equal to 1 in every period. Hence, in this vari-
ant of the model, rollover risk is the sole driver of defaults and potential interest rate
multiplicity. We use 0.1 as the initial probability of the bad Calvo sunspot realization, and
we vary the probability of the Cole-Kehoe sunspot to illustrate how the model works.
Table 2 presents the statistics from a simulated ergodic distribution for three different
probabilities of a bad Cole-Kehoe sunspot. It is evident that the model admits potentially
very different types of behavior for seemingly similar values of this parameter. When the
probability is 5.6% or lower, the agent borrows on the higher interest rate schedule and
defaults every time the markets are closed. As a result, average spread is roughly equal
to the probability of a bad Cole-Kehoe sunspot, while the variance of the spread is zero.

7For simplicity, we forgo the transitory shock.
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On the other hand, for the probability of 5.8% or higher, the agents borrows on the lower
interest rate schedule and reduces debt every time the Calvo sunspots switches to bad in
order to avoid the region of multiplicity. As a result, no defaults occur on equilibrium
path and the bond spread is always zero. In between the two extremes, there is an in-
terval of Cole-Kehoe sunspot probabilities around 5.7% where interesting action occurs.
In this case, the agent initially borrows on the lower interest rate schedule, but then in-
creases the debt and jumps to the higher one when the Calvo sunspot switches to bad (a
“slow moving debt crisis"). The borrower remains there until a Cole-Kehoe type rollover
crisis occurs and forces him into default. It should be emphasized that while the interval
of sunspot probabilities for which interesting behavior occurs is quite narrow, it is so be-
cause the model does not feature any other sources of uncertainty. Section 3.4 shows that
this interval widens considerably when realistic income shocks are introduced. It is also
noteworthy that the average debt-to-income ratio in this case, an untargeted moment,
comes out exactly equal to its empirical counterpart of 66% as reported by Aguiar et al.
(2022) (for quarterly data).

Table 2: Simulated results with no growth regimes

P(sck = 1) 0.056 0.057 0.058

E(debt/Y) 18.2 16.5 13.1
E(spread) 6.0 4.4 0.0
σ(spread) 0.0 2.7 0.0
ρ(s,TB) 0.0 −0.59 0.0

Figure 3 plots the interest rate schedule that arises in the intermediate case of P(sck =

1) = 0.057. The clear multiplicity confirms our analytical result from Section 2 which
shows that the Calvo action space can combine with rollover crises to generate overlap-
ping interest rate schedules with no income shocks. The graph also describes the simple
dynamics of borrower’s decisions in this model. As the agent accumulates debt starting
from zero, he moves along the risk-free interest rate towards the points labeled “A" and
“B". The former is chosen if the Calvo sunspot realization is initially bad, while the latter
is eventually selected when the realization switches to good. Once the borrower lands at
point “B", he will not retreat back to “A" upon another bad Calvo sunspot, but instead
will choose to increase the debt all the way to “C" and incur an interest rate spread of 6%.
With no additional friction or shocks in the model, the agent stays in point “C" until a
Cole-Kehoe rollover crisis occurs, in which case he defaults.8

8As Section 3.4 shows, the full version of this model with stochastic growth regimes also features en-
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An interesting feature of our model is that the interval of Cole-Kehoe sunspot probabili-
ties that generates this dynamics is the same for any Calvo sunspot probability parameter
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Figure 3: Interest rate schedules and policy functions with no income shocks
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that we choose. However, the implications for the resulting simulated moments are quite
different as we vary the likelihood of a Calvo-style crisis. Figure 4 explores this compar-
ative statics by plotting the basic moments of the bond spread and debt for a range of
values that this parameter can take. Panels 4(a) and 4(b) show that the average spread
and average debt ratio are both monotonically increasing in the probability of the bad
Calvo sunspot. The intuition is simple: as the switch to the higher interest rate schedule
becomes more likely, the agent spends less time at point “B" of Figure 3, characterized
by lower debt and the spread of zero, and more time at point “C" with high debt and
positive spread. On the other hand, interestingly, the measured volatility of the spread is
non-monotonic, initially rising sharply from zero and then falling back gradually. The in-
tuition is straightforward: if a Calvo-style crisis is very unlikely, or if it happens too often,
the borrower will end up spending a disproportionate amount of time on the lower or on
the upper interest rate schedule, respectively. Hence, there exists an intermediate value
of the Calvo sunspot probability that balances the average time spent on the two parts of
the schedule, and maximizes the overall bond spread volatility. For the present calibra-
tion, we find that standard deviation of the bond spread peaks at the Calvo probability of
around 5%.

3.4 Quantitative results with growth regimes

We now evaluate the impact of our mechanism in a model with income shocks. As speci-
fied in Table 1, the income shocks are introduced in the form of stochastic growth regimes
and the parameters are based on estimating a Markov-switching process for Mexico’s
economy. Table 3 presents the simulated results across four variants of our model. To offer
a meaningful comparison across the different variants of the model, we adjust the sunspot
probabilities so that the variants exhibit a similar average debt ratio. For completeness,
we also report the results of a model without interest rate multiplicity or rollover risk.
In that case, there is no free parameter and debt becomes an untargeted object averaging
around twice the level of the baseline, while spreads are essentially zero for reasons sim-
ilar to what Aguiar and Gopinath (2006) describe.

For our baseline model that combines interest rate multiplicity with rollover risk, we
fix the Calvo sunspot probability at 10% and we use a Cole-Kehoe sunspot probability of
4.3% which yields an average debt level of close to 16%. For the pure Calvo and pure Cole-
Kehoe variants of the model, we adjust their respective probabilities of a bad sunspot re-
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alization upwards so that the average debt ratio in the simulations is similar.9

Table 3: Simulated results in the quantitative model

Stat Both Only Calvo Only C-K None

P(sc = 1) 0.1 0.275 0.0 0.0
P(sck = 1) 0.043 0.0 0.055 0.0

E(debt/Y) 16.1% 16.1% 17.9% 30.5%
E(spread) 4.0% 0.0% 5.9% 0.0%
σ(spread) 1.5% 0.0% 0.0% 0.0%
ρ(TB,y) −0.22 −0.13 −1.0 −0.68
ρ(s,y) 0.02 0.0 0.0 0.0
ρ(s,TB) −0.66 0.0 0.0 0.0
% Calvo 10.0 0 0.0 0
% Rollover 100.0 0 100 0
% Low growth 22.4 0 22.0 0

As Table 3 shows, our baseline model with multiplicity and rollover risk generates a si-
multaneously high average and high volatility of the bond spread. Similar to the case with
no fundamental shocks described in Section 3.3, a bad Cole-Kehoe sunspot is needed to
trigger a run on the debt and default. However, in this model it is a high growth regime
realization that propels the government to accumulate debt and enter the crisis zone un-
der relatively high spreads. By contrast, a bad realization of the Calvo sunspot causes the
opposite reaction: debt (and spread) is reduced and the government will repay even if
markets do not open the next period. As such, our baseline model with income shocks
generates an interesting dynamics of debt and spreads in both directions (accumulation
and reduction).

By contrast, in the pure Calvo variant of the model, a high probability of the bad sunspot
is required to match the desired level of debt. At that probability, however, the borrower
does not default or enter the multiplicity region on the equilibrium path resulting in a
zero spread. In the pure Cole and Kehoe variant of the model, a level of debt close to
the targeted one is attained for the probability of a bad sunspot of 5.5%, which results in
a roughly equal average spread (essentially, the government always defaults when the
markets shut down). However, the consequence of this behavior is that the volatility of

9Because of a typical knife-edge behavior of such models, it is not necessarily possible to have all three
variants deliver exactly the same level of debt. Hence, we seek parameter values that bring debt levels as
close to each other as possible.
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the spread is zero (Aguiar et al., 2022).

We now turn to the comparative statics analysis for our baseline model with respect to
the probability of a bad Cole-Kehoe sunspot. Figure 5 plots the three moments of inter-
est for the sunspot probabilities ranging up to 6%. The main thing to notice is that, in
contrast to the variant of our baseline model with no shocks to income (Section 3.3), the
range of Cole-Kehoe sunspot probabilities for which we attain interesting debt dynamics
is substantially larger. For the interval of such probabilities up to roughly 4.5%, the model
generates simultaneously a high mean and high variance of the bond spread (increasing
in the probability) with a realistic average debt level. Above that interval the behavior of
the borrower is quite standard; the government stays permanently outside the rollover
crisis zone and no defaults occur.
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Figure 5: Comparative statics in baseline model for Cole-Kehoe sunspot probability

Next, we focus on the pure Calvo variant of the model to compare its ability to gen-
erate interesting debt dynamics for a wider range of parameters. Figure 6 presents the
comparative statics with respect to the probability of a bad Calvo sunspot, the only non-
fundamental variable in that variant. As the figure shows, defaults do occur on equi-
librium path and the model can generate non-zero spread for the sunspot probabilities
lower than 7.5%, which corresponds to much higher debt-output ratios (23% and above).
It is notable, however, that both the average and standard deviation of the bond spread
are at least 50% smaller than in our baseline model.
Finally, Figure 7 presents the comparative statics with respect to the sunspot probability
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Figure 6: Comparative statics in the pure Calvo variant of the model

in the pure Cole-Kehoe variant of the model. The government here behaves as expected:
for low enough probabilities of a bad sunspot it borrows a lot and always remains in the
crisis zone, irrespective of the underlying growth regime. In all these cases, however, the
mean spread corresponds directly to the assumed probability of a bad sunspot while the
spread volatility is zero (unless a default has already occurred, the equilibrium spread
is always a constant). For a sunspot probability greater than roughly 6%, the borrower
reduces its debt sharply and stays outside of the crisis zone. As a result, both mean and
standard deviation of the spread are zero.
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Figure 7: Comparative statics in the pure Cole-Kehoe variant of the model
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4 Conclusion

This paper contributes to the literature of self-fulfilling debt crises by introducing a model
with interest rate multiplicity generated by belief-driven runs on government debt. In
turn, such runs are justified by a realization of high interest rates that by itself results
from pessimistic beliefs. The main achievement of the model is to show that one can
generate rich dynamics of sovereign debt and the interest rate spread by combining the
notions of slow- and fast moving debt crises without any underlying shocks to fundamentals.
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Appendices (for online publication)

A Derivations for the three-period model

In this Appendix, we present the steps to derive the interest rate schedules for our basic
three-period model.

A.1 Risk neutrality

Recall that the borrower will default in period t = 1 if R1b1 > (1 + β)(y − yd). Because
there are two possible values of the interest rate, R∗ and R∗/(1 − p), we have the following
two debt thresholds that limit the repayment decision for the case of low and high interest
rates:

b1 ≤ (1 + β)(y − yd)

R∗ ≡ B1

b1 ≤ (1 + β)(y − yd)(1 − p)
R∗ ≡ B1

Finally, we need to find a debt threshold that makes the borrower indifferent between
repaying and defaulting when markets are open in period t = 1. The condition is

vd
1 = (1 + β)yd = y − R∗

1 − p
b1 + b2 + β max{y2 − R2b2, yd}

Under risk neutrality, assuming the borrower is impatient enough, the optimal borrowing
in that period is b∗2 = y−yd

R∗ . Plugging this value into the indifference condition yields the
following upper debt threshold:

b1 = (1 − p)(y − yd)
(1 + R∗

R∗2

)
≡ B1

A.2 Risk aversion

We now derive the corresponding thresholds for the case of a risk averse borrower. We
assume a CRRA utility function of the form u(c) = c1−γ

1−γ , and we analyze the problem
backwards. Similar as in the case of risk neutrality, in period t = 2 the agent repays if
y − b2R∗ ≥ yd. In period t = 1, if markets do not roll over the debt, the borrower will
default if

vd
1 = (1 + β)u(yd) > v1(R1b1, s1 = 1) = u(y − R1b1) + βu(y)
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If γ > 1, this condition boils down to

R1b1 > y −
(
(1 + β)(yd)1−γ

) 1
1−γ

which is analogous to the condition we obtained in Section A.1 and shows that the de-
fault decision depends on the level of interest rate. Consequently, we have the two debt
thresholds that limit the repayment decision for the case of low and high interest rates:

b1 ≤ 1
R∗

[
y −

(
(1 + β)(yd)1−γ − βy1−γ

) 1
1−γ

]
≡ B1

b1 ≤ 1 − p
R∗

[
y −

(
(1 + β)(yd)1−γ − βy1−γ

) 1
1−γ

]
≡ B1

Next, to find the debt threshold that makes the borrower indifferent between repaying
and defaulting when markets are open in t = 1, we need to find optimal borrowing b2.
Under risk aversion, this entails solving the problem

v1(R1b1, s1 = 0) = max
b2

u(y − R1b1 + b2) + βu(y − R∗b2)

The interior solution to this problem is b∗2 = (βR∗)−1/γy−(y−R1b1)
1+(βR∗)−1/γR∗ , while a corner implies

b∗2 = y−yd

R∗ . To find threshold B1, we need to plug this into the indifference condition in
period t = 1:

vd
1 = (1 + β)u(yd) = u(y − R∗

1 − p
b1 + b∗2) + βu(y − R∗b∗2)

and solve for b1. Under risk aversion, this solution cannot be obtained analytically. The
results in Section 2.1 present our numerical solution to this problem.

B Three-period model with income shocks

This section illustrates our core mechanism using a simple three-period model with in-
come shocks. Following a general description, we will first introduce two benchmark
cases separately—interest rate multiplicity á la Calvo (1988) and rollover risk á la Cole
and Kehoe (2000)—and show that they generate equivalent results. Then, we proceed to
our main model that combines the two frictions.

A representative agent with CRRA utility function of the form u(c) = c1−γ

1−γ enters the first
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period (t = 0) with wealth ω and receives endowments y1 and y2 in the second (t = 1) and
third (t = 2) periods, respectively. The former is stochastic and can take two values, y1 ∈
{yh, yl}, with probabilities π = [ph, 1 − ph], while the latter is deterministic. The agent
can issue one-period non-contingent bonds in t = 0 and t = 1 to a continuum of foreign
risk-neutral lenders, but cannot commit to repay. The risk-free interest rate is denoted as
R∗. In the case of default, the agent is permanently excluded from international financial
markets and consumes yd.

B.1 Calvo setup

In the Calvo framework, it is assumed that the lenders move first in offering the borrower
an interest rate schedule, who in turn decides whether to default or not and, in case of the
latter, chooses the amount of debt revenue b2 to issue. We present the problem backwards.
The borrower arrive in period t = 2 with wealth w2 and chooses whether to repay or
default:

v2(w2) = max
{

u(yd), u(w2)
}

In period t = 1 the borrower with wealth w1 also chooses between repayment or default
by comparing the values associated with both options:

v1(w1) = max
{

vd
1, vnd

1 (w1, s1)
}

The value associated with repayment involves the borrower choosing debt revenue b2,
with a corresponding interest rate R∗(b2):

vnd
1 (w1) = max

b2
u(w1 + b2) + βv2

(
y2 − R2(b2)b2

)
The value associated with default involves permanent autarky:

vd
1 = (1 + β)u(yd)

Lemma 3 characterizes the optimal borrowing decision in period t = 1, along with the
threshold level of wealth that makes the borrower indifferent between repaying and de-
faulting.

Lemma 3 If the utility function is CRRA, u(c) = c1−γ

1−γ , then the optimal level of debt taken in
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period t = 1 is

b∗2 (ω1) =
(βR∗)−

1
γ y2 − ω1

1 + (βR∗)−
1
γ R∗

The threshold level of wealth that makes the government indifferent between repaying and default-
ing in period 1 is

ω1 =
[
(1 + β) (yd)

1−γ − β (y2 − R∗b∗2 (ω1))
1−γ

] 1
1−γ − b∗2 (ω1)

Finally, in period t = 0 the government chooses an amount to borrow b1 in the presence
of a sunspot variable s0:

v0(w0, s0) = max
b1

u(w0 + b1) + β ∑
y1

π(y1) v1

(
y1 − R1(b1)b1

)
The realization of the sunspot variable s0 determines which interest rate schedule will
apply, in the case of multiplicity. If s0 = 0 then no sunspot occurs and we assume that
the lowest possible schedule is in force. If s0 = 1 then the bad sunspot kicks in and we
assume that the interest rate switches to the highest-lying schedule. Lemma 4 describes
the interest rate schedules that the borrower faces.

Lemma 4 The interest rate schedules are:

R1(b1) =


R∗, if b1 ≤ yL−ω̄1

R∗

R∗
pH

, if yL−ω1
R∗ pH ≤ b1 ≤ yH−ω1

R∗ pH

0, otherwise

The solution to the borrower’s problem in period t = 0 is obtained numerically. We
present the results in Section B.4.

B.2 Cole-Kehoe setup

In the Cole-Kehoe framework, it is assumed that the borrower moves first and chooses
a level of debt obligation, while lenders post a price that reflects the default risk. Self-
fulfilling equilibria are generated by a change of timing of the bond auction. It is assumed
that the borrower first chooses the new debt issuance, and then decides whether to default
or not. The lenders’ sentiment about the default decision at the time of pricing the debt
in period t = 1 is determined by a sunspot variable s1. In the case of a bad realization,
markets shut down in that period and the government is unable to roll over any debt.
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The probabilities of the good and bad sunspot realizations are given by Γ = [pg, 1 − pg].

Again, the problem is presented backwards. In period t = 2 the government chooses
between repayment and default:

v2(b2) = max
{

u(yd), u(y2 − b2)
}

Taking this decision as given, in period t = 1 the government solves:

v1(y1, b1, s1) = max
{

vd
1, vnd

1 (y1, b1, s1)
}

where
vnd

1 (y1, b1, s1 = 0) = max
b2

u
(

y1 − b1 + b2 q2(b2)
)
+ βv2(b2)

indicating that the markets are open in that period (i.e. the sunspot realization is good),
and

vnd
1 (y1, b1, s1 = 1) = u(y1 − b1) + βv2(0)

if the markets do not open in that period. The value of default is

vd
1 = (1 + β)u(yd)

The period t = 2 bond price is trivially given by:

q2(b2) =

 1
R∗ , if b2 ≤ yL − yd

0, otherwise

Hence, the period t = 1 bond price is uniquely pinned down in this case by the debt level
(no multiplicity) because there is no debt rollover problem in period t = 2.

In period t = 0 the government chooses:

v0(y0) = max
b1

u
(

y0 + b1 q1(b1)
)
+ β ∑

y1

∑
s1

π(y1)Γ(s1) v1(y1, b1, s1)

Lemma 5 characterizes the bond price q1 as function of the level of debt chosen by the
borrower. The bond price schedule, along with the numerical solution of the dynamic
programming problem, are presented in Section B.4.
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Lemma 5 The bond price schedules are:

q1(b1) =



1
R∗ , if vnd

1

(
y1, b1, s

)
≥ vd

1 ∀y1, s
1−pB pL

1+r∗ , if vnd
1

(
yL, b1, 1

)
< vd

1, and ≥ otherwise
1−pL
1+r∗ , if vnd

1

(
yL, b1, 0

)
< vd

1, and ≥ otherwise
1−pB
1+r∗ , if vnd

1

(
yH, b1, 1

)
< vd

1, and ≥ otherwise
pH pG
1+r∗ , if vnd

1

(
yH, b1, 0

)
≥ vd

1, and < otherwise

B.3 Calvo and Cole-Kehoe setup

Finally, we combine the two frameworks in the sense that we model the sovereign debt
accumulation in the Calvo fashion, but we also allow for the Cole-Kehoe type of rollover
crises.

Again, the problem is presented backwards. The choice in period t = 2 is the same as in
the pure Cole-Kehoe variant. In period t = 1 the government chooses whether to repay
or default. In the case of a bad sunspot realization, s1 = 1 (that is markets do not open),
the government will default if

vnd(y1, b1, s1 = 1) = u
(

y1 − R1(b1)b1

)
+ βu(y2) ≤ (1 + β)u(yd)

By contrast, if the realized sunspot is good, s1 = 0, then the value of repayment is

vnd(y1, b1, s1 = 1) = max
b2

u
(

y1 − R1(b1)b1 + b2

)
+ βu(y2 − R∗b2)

In period t = 0 the government chooses:

v0(ω0, s0) = max
b1

u
(

ω0 + b1

)
+ β ∑

y1

∑
s1

π(y1)Γ(s1) v1(y1, R1(b1, s0)b1, s1)

Once again, we assume that the period t = 0 sunspot realization determines which in-
terest rate schedule will apply to the borrower. The following Section B.4 presents the
schedules and the numerical solution to the borrower’s problem.

25



B.4 Numerical example

We will now demonstrate the differences between the models through a simple numerical
example. Table 4 contains the parameter values used to solve the model. While these
parameters have not been selected in any disciplined way, the following results hold for
a wide range of parameterizations.

Table 4: Parameter values assumed in the simple model

Parameter Meaning Value

γ Risk aversion 2.0
β Discount factor 0.7
yh High income 1.2
yl Low income 0.8
yd Income in default 0.8
y2 Income in t = 2 1.0
ph Prob. of low income 0.3
pg Prob. of good sunspot 0.8
R∗ Risk-free rate 1.0

Figure 8 shows the interest rate and bond price schedules in the benchmark models of
Calvo and Cole-Kehoe, respectively. The first thing to notice are the overlapping interest

0 0.1 0.2 0.3 0.4 0.5 0.6

borrowing level

0.8

1

1.2

1.4

1.6

1.8

interest rate schedules in period 0

Calvo schedule
Cole-Kehoe translated

(a) Interest rate schedules in Calvo framework

0 0.1 0.2 0.3 0.4 0.5 0.6

borrowing level

0

0.2

0.4

0.6

0.8

1

1.2
bond price schedules in period 0

Cole-kehoe schedule
Calvo translated

(b) Bond price schedules in Cole-Kehoe framework

Figure 8: Interest and bond price schedules in benchmark models
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rate schedules in the Calvo model. The overlap determines the region of multiplicity. Sec-
ond, translating these into the Cole-Kehoe notation yields identical bond price schedules
(and vice-versa). In other words, the two models are equivalent. They also yield equiva-
lent policy functions: for the lowest levels of initial wealth, government borrows 0.43 at
the higher interest rate of 1.43. As initial wealth rises, the optimal level of debt is either
0.15 or 0.21, depending on the realization of the Calvo sunspot. Equivalently, in the Cole-
Kehoe setup, the agent borrows at the price of q = 0.7 for the lowest wealth levels, which
implies that he defaults in the event of a low income realization whether the market are
open or not. As such, the agent avoids the “rollover crisis zone". This means that in both
models, as initial wealth rises, the borrower chooses the highest possible level of debt that
grants him a risk-free interest rate, and is able to avoid the multiplicity or a self-fulfilling
debt crisis altogether.

Now, we present the interest rate schedules in our proposed model that combines the
two frameworks. Figure 9 plots the resulting interest rate schedules, along with the ones
from the Calvo model without rollover crises depicted in Figure 8(a). It can immediately
be noticed that the combined model generates more interest rate schedules which for the
most part do not overlap with the original ones. In addition, there are more intervals of
multiplicity of equilibrium, which also do not overlap (in terms of the desired borrowing
level) with the one predicted by the original model. In fact, in the combined setup multi-
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Figure 9: Interest rate schedules in the combined Calvo and Cole-Kehoe model
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plicity may occur at much lower levels of borrowing.

Figure 10 plots the optimal borrowing decisions along with equilibrium interest rates for
the combined model, as function of the initial wealth level and depending on the initial
realization of the Calvo sunspot. It is immediate to notice that the policy functions are
more interesting in this setup than in the two benchmarks. In particular, for the case of a
good sunspot (panel 10(a)), the agent actively borrows in the region of multiplicity. When
the sunspot switches to bad (panel 10(b)), the pattern of borrowing must altered by either
borrowing more at a higher interest rate, or borrowing less at a lower one.
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Figure 10: Optimal borrowing and equilibrium interest rate in the combined model
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