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Abstract1 

Road congestion and air pollution are key challenges for quality of life in urban settings. This 

research leverages highly disaggregated crowdsourced data from Latin America to study the effect 

of road congestion on levels of carbon monoxide, nitrogen dioxide, and particulate matter in four 

of the most congested cities in developing countries: Bogota, Buenos Aires, Mexico City, and 

Santiago. Based on a panel data econometric approach with over 4.4 billion records from Waze 

and hourly data from 54 air monitoring stations for 2019, our two-stage least square model shows 

a cumulative increase of 0.6% in response to a 1% of road congestion on the three air pollutants. 

Moreover, we find a nonlinear relationship between road congestion and air quality and estimate 

the threshold above which the effect decays. This study provides evidence that supports public 

policies designed to make urban mobility more sustainable by implementing measures to reduce 

road congestion in developing contexts. 

Keywords: road congestion, air quality, urban mobility, sustainability, developing countries, Latin 

America. 
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Introduction 

Air pollution is a critical global issue affecting physical and mental health, well-being, and 

mortality (Heft-Neal et al., 2018). Several respiratory illnesses and cerebrovascular and 

cardiovascular diseases have been linked to high levels of particulate matter in the air (Burnett et 

al., 2014). Globally, over 3 million premature deaths per year can be attributed to outdoor 

pollution. Particulate matter from combustion emissions is linked to around 200,000 premature 

deaths per year, and 53,000 of these deaths are associated with road transportation emissions 

(Lelieveld et al., 2015).  

Indeed, road traffic is one of the most critical contributors to high CO2 and NO2 levels in the air. 

These levels are linked to health problems affecting the lungs, eyes, larynx, and pharynx (Barr 

Rosso, 2021). This pollution is a major challenge in global urbanization processes, which are 

driving higher volume and more geographically concentrated road traffic. These urbanization 

processes bring positive benefits from agglomeration economies, including more accessible 

employment opportunities and health services, but they also entail negative externalities such as 

road congestion and pollution (Higgins et al., 2019).  

Latin America and the Caribbean is the most urbanized region in the world (IDB, 2021). About 

80% of its population lives in cities, and two-thirds of people in the region live in cities with 20,000 

people or more. These levels of urbanization are much higher than the average for industrialized 

countries (ECLAC, 2012). If this exponential urbanization trend continues, a projected 100 million 

people will live in either Mexico City, Sao Paulo, Buenos Aires, Rio de Janeiro, Bogota, or Lima 

by 2025 (IDB, 2021). The rapid pace of urbanization brings significant challenges for cities in the 

region, such as housing shortages, road congestion, decreasing air quality, and lower life 

expectancy (ECLAC, 2012). Indeed, higher levels of air pollution can shorten life expectancy by 

an average of 1.8 years (Barr Rosso, 2021). In a study that included 652 cities in Latin America 

and the Caribbean, the Economic Commission for Latin America and the Caribbean (ECLAC, 

2021a) found that an average increase of 10 μg/m³ of PM10 and PM2.5 was associated with 

increases in mortality of 0.4% and 0.7%, respectively. 

Road congestion is a growing issue for many cities in Latin America and the Caribbean. The region 

holds eight of the world's thirty most congested cities: Bogota (number 3 in the TomTom ranking), 

Lima (7), Mexico City (13), Recife (15), Rio de Janeiro (20), Sao Paulo (24), Santiago (26), and 

Salvador (28) (TomTom, 2020). Cities bear direct and indirect costs from this congestion. For 

example, in 2019 the monetary cost of road congestion in Buenos Aires and Mexico City, 

measured as the value of time lost in traffic delays, was three times what these cities spent on 

education (Calatayud et al., 2021). According to Gómez-Lobo et al. (2022), a 5% increase in road 

congestion would reduce the GDP of cities in the region by 0.5%. Congestion is also linked to road 

accidents: Sánchez González et al. (2021) estimated that a 10% drop in road congestion could 

decrease road accidents by 3.4%.  

The potential post-pandemic increase in private vehicle usage is raising further concerns about 

congestion and its negative externalities. In a global survey, the number of respondents who said 

having a private vehicle was very important to them increased by 12 percentage points from pre-

pandemic levels (Berger, 2020). In Mexico and Brazil, for example, 58% of respondents said the 

pandemic caused them to reconsider the number of vehicles their household needs (Ford, 2021). 
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In this context and given the pressing need to transition to a more sustainable mobility model and 

reduce mobility’s impact on pollution and quality of life, it is important to ascertain the extent to 

which congestion is related to deteriorating air quality. 

To help close this knowledge gap, this paper leverages over 4.4 billion crowdsourced records and 

hourly data from 54 air monitoring stations to estimate panel-data econometric models and discuss 

the effect of road congestion on CO, NO2, and PM10 in four Latin American cities that are among 

the world’s most congested: Bogota (Colombia), Buenos Aires (Argentina), Mexico City 

(Mexico), and Santiago (Chile). These are among the six major air pollutants regulated in the 

United States (EPA, 2022), and are generated considerably by circulating vehicles but have not 

been widely researched regarding its relationship with road congestion. Moreover, available 

studies have valid results only for specific settings. Thus, the research also explores the temporal 

dynamics of congestion on each air pollutant, including its autoregressive behavior and cumulative 

effects. Finally, to provide results for a broader list of air pollutants (PM2.5, NO, and NOx) and 

explore heterogeneities within urban areas, we take a closer look at the case of Bogota and analyze 

air quality patterns by geographical area of the city.  

The study aims to help policymakers in emerging economies — especially in highly urbanized and 

congested cities in Latin America — design and implement measures to reduce road congestion. 

In addition, since transportation is one of the biggest contributors to global warming due to its use 

of fossil fuels, this research aims to help achieve a more sustainable mobility model, in line with 

the Paris Agreement’s goal of limiting global warming to less than 1.5°C.   

This paper is organized as follows: Section 1 reviews the available literature on the relationship 

between road traffic and air quality. Section 2 explains the theoretical framework for the analysis. 

Section 3 presents the data and methods we applied. Section 4 presents the results from the 

econometric approach. Section 5 discusses the results and policy implications, and Section 6 

contains the study’s conclusions. 

 

1. Literature Review 

The literature shows that changes in the scale of cities lead to longer travel times and shifts in 

modal preferences, generally from walking or using public transportation to increased dependency 

on private vehicles. These changes usually worsen air quality because of higher aggregate fuel 

consumption (Lu et al., 2021). The mechanism is as follows: higher vehicle density that exceeds 

road capacity is followed by congestion, which generates travel delays and increases energy 

demand (Zhang and Kockelman, 2016). This in turn means more vehicle emissions and higher 

concentrations of pollution. Worse air quality from congestion poses a significant health risk for a 

city's inhabitants, shortening life expectancy (Zhanga and Batterman, 2013). 

Most existing evidence on the relationship between congestion and pollution is for advanced 

economies. For instance, Zhang and Batterman (2013) conducted two controlled case studies — 

one on an interstate highway of Michigan and another on an arterial road in Detroit, USA — to 

assess how emissions due to road congestion affected emergency doctor visits, hospital 

admissions, and mortality attributed to NO2 exposure. Their findings suggest a differentiated 

effect: for freeways, a U-shaped risk factor was reported for on-road populations; for arterial roads, 
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the risk increased sharply for both on-road and near-road populations. Requia et al. (2018) 

implemented a Stochastic User Equilibrium Traffic Assignment Algorithm with data from a travel 

survey in Toronto, Canada to estimate emissions as related to congestion. They then computed 

mortality rates linked to PM2.5. Their results indicate a substantial effect on mortality, especially 

during morning rush hours.  

Lack of data has often been a major constraint for conducting such analyses in developing contexts. 

However, developing contexts are precisely where the highest levels of urban congestion are 

observed: 29 of the world’s 50 most congested cities are located in developing countries 

(TomTom, 2022). But recently novel data sources such as environmental monitoring stations, 

satellite images, and digital traffic-monitoring platforms have allowed researchers to start bridging 

this gap. For example, using data from one environmental monitoring zone, Heger et al. (2019) 

studied the relationship between car density and PM10 concentrations on a road segment in Cairo 

in 2016 and 2017. Applying a panel model with fixed effects, they found that PM10 concentration 

increased by 8.6 μg/m³ per 100 cars within the range of the monitoring station. Soleimani et al. 

(2022) leveraged hourly data from sixteen monitoring stations in Isfahan (Iran) to conclude that 

vehicle traffic was responsible for 14% of changes in PM2.5 between 2018 and 2020. 

Furthermore, Dasgupta et al. (2021) combined satellite-based traffic and pollution data with 

meteorological information (temperature, humidity, and wind speed and direction) and 

socioeconomic data to investigate the temporal dynamics of vehicle congestion and pollution in 

Tanzania. They found wind speed to be a critical in explaining the intensity of air pollution from 

vehicle traffic. Mishra et al. (2019) used data from online platforms such as Google Maps to 

identify the areas with the highest emissions from road congestion in Delhi (India). 

Despite these key advances in the literature, evidence on the causal relationship between road 

congestion and emissions is still very limited. Lu et al. (2017) used PM10 data from the daily air 

pollution index reported by local authorities in Beijing and PM2.5 data from a single monitoring 

station to analyze the relationship between driving to school, congestion, and emissions around 

schools. Applying a two-stage least squares regression model using school vacations as exogenous 

shocks in traffic congestion, the authors found that the 20% drop in traffic congestion during school 

vacations reduced daily average PM10  emissions by 12%. Nonetheless, as recognized by the 

authors, their estimates are constrained by city-level aggregated data and a small sample size.  

Evidence is almost nonexistent In Latin America, and available studies have analyzed indirectly 

the relationship between air quality and road congestion. In Santiago, Chile, the effect of temporary 

driving bans derived from alerts on the city's air quality between 2000 and 2015 was evaluated. 

Rivera (2021) implemented a regression discontinuity design, finding evidence that temporary 

reductions in driving reduced car trips by 6-9% in peak hours and 7-8% in off-peak hours, which 

translates into a reduction of air pollution in peak hours, a reduction of congestion - given the 

decrease in car trips, and the increase of the city's mass transit system. 

Pachon et al. (2021) analyzed the factors influencing dust loading on the urban center of Bogota. 

Specifically, the resuspended particulate matter particles of less than 10 micrometers (RPM10) 

were found to be influenced by four factors: road characteristics, driving speeds, land use, and 

meteorological conditions. For the development of the study, the use of a road dust sampler was 

implemented in which 41 samples collected in different points of the city were collected. Results 
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suggest that the lowest RPM10 values are present under conditions of fast driving speed, absent 

infrastructure constructions, and high vegetation; on the contrary, RPM10 concentrations 

increased under heavy-duty traffic conditions.  For the same city, Zhang et al. (2017) implement a 

regression discontinuity design (RDD) and found empirical evidence that license plate-based 

driving restrictions can cause diverse effects on air pollutants, specifically it can generate a 

significant decrease in NO but an increase in NO2, NOx and O3. 

Due to the lack of analysis focused on the causal relationship between road congestion and 

pollution in developing contexts including Latin America, policymakers have limited ability to 

properly estimate the negative externalities of congestion, prioritize congestion mitigation in both 

transportation and health agendas, and implement policies that effectively address this problem in 

large and highly congested cities. To close this gap, this study uses highly disaggregated big data 

on road traffic and air quality data from 54 air monitoring stations to estimate the relationship 

between urban road congestion and air quality in four of the most congested cities in developing 

countries. It then analyzes the behavior of this relationship across such cities. The granularity of 

crowdsourced data allows us to rule out fixed and seasonal effects at air monitoring stations across 

multiple cities and regions, thus yielding results with higher external validity than other available 

evidence. Furthermore, this research provides evidence on the nonlinear form in which road 

congestion impacts air quality and explores and accounts for the autoregressive behavior of 

congestion on air quality.  

2. Theoretical framework 

According to the Macroscopic Fundamental Diagram of Traffic on an urban scale, the relationship 

between vehicular density and speed is negative and linear in both non-saturated and oversaturated 

flow situations (Geroliminis and Daganzo, 2008). However, the relationship between vehicular 

flow and speed may be nonlinear, reaching a maximum when oversaturated flow begins (Figure 

1). These dynamics have several repercussions for how congestion can increase vehicles’ fuel 

consumption, and consequently their emissions that affect air quality. 

 

Consider scenario A, where congestion — measured as the number of hours lost in traffic — 

increases from point A0 to A1 in Figure 1. According to the Greenshields Macroscopic 

Fundamental Diagram of Traffic, congestion is directly linked to higher vehicle density (veh/km) 

and, therefore, to lower speed (km/hour) (Geroliminis and Daganzo, 2008). Because this change 

occurs in the non-saturated flow section (when there is no road congestion), which is represented 

by continuous segments in Figure 1, the drop in speed occurs while flow (veh/hour) continues to 

increase. But this increase in flow happens at decreasing rates. In other words, a higher number of 

vehicles limits the space available for other vehicles to enter a specific lane. With a higher number 

of vehicles per kilometer per hour, fuel consumption (l/km) is expected to be higher (Figure 2 

[d]). These dynamics are supported by the findings of Shabihkhani and Gonzales (2015) on the 

link between density and emissions, as well as the conclusions of the NCHRP (2005) regarding 

the relationship between flow and emissions.  
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Figure 1 Traffic Model 

 
Source: Prepared by the authors based on Geroliminis and Daganzo (2008). 

 

Now, consider scenario B, with an oversaturated flow in which congestion increases from point 

BO to B1 and B2 (represented by the discontinuous sections in Figures 1 and 2). Although density 

increases, the drop in speed has a different relationship to vehicular flow. Since the road is already 

congested, a decrease in speed is accompanied by a drop in vehicular flow. When flow is 

oversaturated, changes in speed will have considerable influence on the direction of the 

relationship between congestion and energy demand. Zhou et al. (2023) show that the relationship 

between speed and fuel consumption is negative, but the magnitude of the change is different in 

low-speed ranges versus high-speed ranges. Greater changes in fuel consumption are reported 

during low-speed levels. 

 

Furthermore, speed variability influences the level of fuel consumption (Zhou et al., 2023b). In 

scenario A and during the initial stages of scenario B, after an increase in vehicle density, speed 

variance is expected to increase as vehicles move from optimal free-flow speeds, i.e., the maximum 

point in the relationship between speed and flow, to traffic jam speeds. The advanced stages of the 

oversaturated flow scenario are different, as vehicles are limited to moving within a considerably 

lower range of speeds. This situation is represented in the segment after the maximum point is 

reached in Figure 2 (b). Indeed, speed and flow are both zero in a fully saturated traffic jam. 

Consequently, in advanced stages of the oversaturated flow scenario, the combination of lower 

flow and speed variability means there is relatively lower aggregate demand for fuel (Figure 2 

[d]). This study will empirically assess this nonlinear form by leveraging the highly disaggregated 

data collected for the four cities being analyzed. 
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Figure 2 Theoretical relationship between vehicular density, delay, and fuel consumption 

 
 

Source: Prepared by the authors based on Greenshields (1935), NCHRP (2005), Shabihkhani and 

Gonzales (2015), and Zhang and Kockelman (2016).  
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3. Data and Methods 

To assess the impact of road congestion on air quality in Latin America and the Caribbean, we 

collected traffic data for the urban areas of Bogota, Buenos Aires, Mexico City, and Santiago. The 

boundaries of the study area are outlined by the black polygons in Figure 3. TomTom (2020) ranks 

these cities as 3rd, 66th, 13th and 26th on its list of the most congested cities in the world. We 

retrieved over 4.4 billion road segment records for these areas from Waze, a mobile navigation 

app with a high adoption rate in the four cities (Waze, 2019). This data covers all of hours of 2019 

(from 00:00 January 1 to 23:59 December 31), which is the year before mobility was severely 

restricted to contain the COVID-19 pandemic.  

Waze has proven to be a valid source of information with enough coverage and precision for 

conducting statistical inference studies. For instance, Amin-Naseri et al. (2018) compared one year 

of Waze data with the recorded incidents in Iowa’s advanced traffic management system (ATMS) 

in the same timeframe. The authors indicated that the crowdsourced data stream from Waze is an 

invaluable source of information with broad coverage of crash and congestion reports, on average 

9.8 minutes earlier than a probe-based alternative and achieving a reasonable geographic accuracy. 

Also, Hoseinzadeh et al., (2020) assessed the quality of Waze data and conducted a case study in 

Tennessee, USA; the authors replicated speed and jam length remarkably. Furthermore, Goodall 

& Lee (2019) evaluated the accuracy of Waze data by observing a 2.7-mile corridor on a major 

urban freeway in Virginia, USA, finding that it replicated the information collected by other 

means, such as traffic detection cameras and police reports. 

Indeed, this mobile navigation application with over 130 million monthly active users has been 

used to measure the impact of sports megaevents on traffic (Xu and González, 2017), analyze road 

safety (Goodall and Lee, 2019), repositioning police agents (Fire et al., 2012), and estimate vehicle 

speed on urban corridors (Nune et al., 2017). Its validity has allowed completing research in 

developing studies where traditional sensors and cameras are usually not available. 

Waze provides two types of data (Calatayud et al., 2021): 

 

(i) Alerts: Waze users report alerts based on what they notice on the road. Once an alert 

is reported, other users validate it by using the app to report whether the alert still 

applies. Based on the information received from users, Waze calculates a reliability 

factor of 1 to 10, where 10 is the most reliable. Users can report three kinds of alerts: 

(i) Accident, which is any type of collision; (ii) Hazard, for reporting stranded vehicles 

or objects on the road, adverse weather conditions, and floods, among other events; and 

(iii) Road Closed, for lane closures due to demonstrations, events, maintenance, or 

other reasons. 

 

(ii) Jams: Waze actively builds this dataset using smartphone GPS signals. When the API 

identifies a significant group of vehicles moving at an irregularly variable speed, it 

classifies this as a traffic jam, in contrast to free-flow speed. Waze collects information 

on average speed, expected delay from the traffic jam compared to free-flow 

conditions, geographical coordinates, and traffic jam length for each traffic jam. 

Information on road status is updated every 2 minutes. 

We use the definition of congestion from Goodwin (2004) "…the impedance vehicles impose on 

each other, due to the speed-flow relationship, in conditions where the use of a transport system 
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approaches its capacity." Accordingly, we estimate congestion as the extra travel time experienced 

by road users due to an excess of vehicles on a portion of the road at a specific time that results in 

slower-than-normal speeds. Put differently, congestion is measured as the total number of hours 

vehicle occupants lost in 2019 due to traffic delays in the areas within the polygons. We used the 

methodology developed by Calatayud et al. (2021) to calculate congestion in those areas using 

Waze data. 

As depicted in Table 1, Mexico City and Bogota are the cities with the highest number of traffic 

jams and alerts recorded. They also reported the highest average jam duration in 2019. 

Consequently, although Buenos Aires had almost half as many records of traffic jams as Bogota, 

it is only second to Mexico City in number of unique traffic jams. For all variables considered in 

this study, Mexico City has the highest values of the four cities, while Santiago reports the lowest 

values, especially in the number of unique jams, but also for average jam duration and number of 

alerts.  

 

Figure 3 Study areas 

  
(a) Bogota (b) Buenos Aires 

 

  
(c) Mexico City (d) Santiago 

Source: Prepared by the authors. 

Note: The black polygons denote the area where road congestion data was collected. The blue dots 

indicate the location of air quality monitoring stations. 
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Table 1 Descriptive statistics for road congestion (2019) 

City 

Records of 

traffic jams 

Unique  

jams 

Average jam 

duration  

Alerts  

recorded  

(millions) (millions) (minutes) (millions) 

Bogota 1,101 17.8 20.9 13.8 

Buenos Aires 634 21.5 15.4 11.0 

Mexico City 2,162 37.1 23.1 14.9 

Santiago 576 11.8 12.9 7.6 

Source: Prepared by the authors from Waze. 

 

In 2019, Mexico City had the highest traffic delays among the four cities analyzed, reaching over 

600 million hours lost in traffic, followed by Bogota and Buenos Aires, with over 300 million 

each. The lowest congestion levels were in Santiago, with under 200 million hours lost in traffic 

(Figure 4). In per-capita terms, during that year each inhabitant lost 31 hours in Bogota, 30 hours 

in Mexico City, 29 hours in Santiago, and 20 hours in Buenos Aires due to traffic delays. 

Variability levels are correlated with total delay. The median delay per hour in Mexico City was 

59,700 hours, with a standard deviation of 60.5 and a maximum of 373,700 hours. Bogota had 

fewer outliers in the sample and a median delay of 37,600 hours. While Santiago had the lowest 

median number of hours lost in traffic (27,200 hours), its standard deviation was higher than that 

of Bogota and similar to that of Buenos Aires. 

 

Figure 4 Hours lost due to road congestion and its per-hour variability in 2019 

  
(a) Total road congestion (b) Distribution of road congestion 

 

Source: Prepared by the authors with data from 

Waze. 

 

To measure air quality, we collected data on carbon monoxide (CO in particles per million, ppm), 

nitrogen dioxide (NO2 in particles per billion, ppb), and particulate matter with a diameter of 10 

micrometers or less per cubic meter (PM10 in μg/m³) from the field monitoring stations in each of 

the four cities. We did not consider the monitoring stations that do not provide data for prolonged 

periods and make it inviable to estimate the models. Furthermore, for those short periods of non-

reporting data because of station maintenance of related activities, we followed the consideration 
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by Cameron & Trivedi (2005) regarding missing data completely at random (MCAR) to guarantee 

this type of event does not bias the analysis. The blue dots in Figure 3 show the geographical 

distribution of the monitoring stations. Our dataset contains hourly emissions data recorded by 

each station during 2019. The highly disaggregated data offers an advantage over previous studies, 

since we were able to account for fixed effects between and within cities, isolating the effect of 

congestion on emissions while controlling for other factors that may explain different emissions 

levels.  

In 2019, Buenos Aires and Mexico City had the highest hourly median level of NO2, at 20 ppb. 

Santiago had the highest standard deviation in values of NO2 at 25 ppm, as well as the highest 

value, at 565 ppm. When looking at the daily median level in Santiago, the standard deviation was 

15 ppm, and the maximum was 50 ppm, as shown in Figure 5. For PM10, Santiago reported the 

highest hourly median value with almost 60 μg/m3, as well as the highest variability and maximum 

values. Mexico City, Bogota, and Buenos Aires followed, reporting daily median values of under 

50 μg/m3. Finally, with nearly 0.70 ppm, Bogota reported the highest hourly median value of CO. 

However, its standard deviation was lower than Santiago's (0.56 vs. 0.75 ppm, respectively). 

Mexico City reported the lowest hourly median value of CO among the four cities (0.30 ppm) 

(Table 2). 

 

Table 2 Air quality in study areas in 2019 (in ppm for CO, ppb for 𝑁𝑂2, and μg/m³ for 𝑃𝑀10) 

City Stations Contaminant Mean S.D. Min Median Max 

Bogota 10 NO2 17.15 9.55 -0.05 16.01 83.39 

  CO 0.83 0.56 -0.05 0.69 5.43 

  PM10 34.26 23.83 0.00 29.00 385.00 

Buenos Aires 3 NO2 20.76 9.33 0.00 20.00 89.00 

  CO 0.58 0.27 0.00 0.53 4.36 

  PM10 25.73 9.61 3.00 24.00 86.00 

Mexico City 33 NO2 21.78 12.91 0.00 20.00 109.00 

  CO 0.38 0.36 0.00 0.30 5.20 

  PM10 43.52 28.20 1.00 38.00 653.00 

Santiago 8 NO2 21.86 24.97 0.00 17.50 565.17 

  CO 0.65 0.75 0.05 0.43 10.99 

   PM10 69.68 48.92 0.00 58.00 983.00 

Source: Prepared by the authors. 
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Figure 5 Distribution of daily median air quality, by city (2019) 

 
Source: Prepared by the authors. 

Figure 6 shows the temporal dynamics of pollutants in 2019. In Santiago, both the level and 

variability of pollution, especially CO and PM10, increased considerably from March to October. 

Moreover, NO2 and CO values peaked at the beginning of July, and PM10 values were relatively 

higher during this month as well. Meanwhile, the highest CO, NO2 and PM10 levels in Bogota and 

Mexico City were observed in the first and last months of 2019. In the case of Buenos Aires, NO2 

levels increased from June until the end of the year, and CO also increased at the end of May and 

the beginning of June but returned to stable levels in October. Unlike the other cities, PM10 values 

in Buenos Aires remained relatively stable throughout the year. 
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Figure 6 Time series of average air quality (2019) 
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Source: Prepared by the authors. 

Finally, Figure 7 plots air quality levels against traffic delay due to road congestion for the four 

cities. To capture the hours of higher variability in road congestion, we differentiate between 

morning and afternoon rush hours. In all cases there is a positive relationship between pollution 

levels and traffic delays. Furthermore, in almost all cases the relationship seems to be nonlinear, 

such as shown in Figure 2 on the theoretical dynamics between congestion and fuel consumption.  

Next, we statistically test whether the effect of road congestion on CO, PM10, and NO2 levels is 

indeed nonlinear. If true, then the magnitude of the effect will vary according to the stage of road 

congestion. According to Brownfield et al. (2003) and Grant-Muller et al. (2007), there are three 

stages: 

1. Pre-congestion stage (PCS): When free-flow conditions break down but complete 

congestion has not yet occurred. This may happen at the beginning or end of a period 

of congestion. It can also occur between periods of congestion, due to fluctuations in 

vehicle movement and speed, depending on the type of traffic jam. 

 

2. Recurrent congestion stage (RCS): Congestion at regular times at fixed locations, for 

example, during peak hours. 
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Figure 7 Relationship between congestion and air quality during peak hours (2019) 

(a) Morning peak (7-10 am) (b) Afternoon peak (4-7 pm) 

 

 

 
Source: Prepared by the authors. 

Note: The figure shows city-wide averages for all air monitoring stations. 

 

3. Non-recurring congestion stage (NRCS): Congestion at non-regular times that cannot 

be predicted by road users. An example is traffic congestion caused by road incidents 

or weather events.  

 

In addition, we consider the cumulative effect (CE) of road congestion on air quality. Due to the 

autoregressive behavior of pollutants, a worsening of air quality at a given time is expected to 
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influence air quality during the following hours. Therefore, CE measures the accumulated effect 

on pollutants from when free-flow conditions break down until the effect disappears.   

 

To test the impact of congestion on air quality in the four scenarios described above, we apply an 

econometric model that accounts for the serial correlation of contaminants and controls for 

confounding variables such as weather conditions. We use variability between stations to rule out 

any systematic fixed differences in contaminants by station and city over time. An example of 

these differences would be a decrease in air quality caused by fixed industrial sources. Specifically, 

we follow Cameron and Trivedi (2010) and use a cross-sectional time-series regression model with 

fixed effects, where the disturbance term is a first-order autoregressive process, represented as 

follows: 

 

 𝑦𝑖𝑡𝑥1 = 𝛼 +  𝑦(𝑖(𝑡−1))𝑥1𝜆1𝑥1 +  𝑥𝑗𝑡𝑥2𝛽2𝑥1 +  𝑐𝑗𝑡𝑥𝑓𝛾𝑓𝑥1 + 𝑚1𝑥𝑤𝜃𝑤𝑥1  +  𝑑1𝑥𝑒𝜔𝑒𝑥1  +  (1) 

                ℎ1𝑥𝑞𝜓𝑞𝑥1 +  𝜐𝑖𝑥1 + 𝜀𝑖𝑡𝑥1  

   

 𝜀𝑖𝑡𝑥1 =  𝜀(𝑖(𝑡−1))𝑥1𝜌1𝑥1 +  𝜂𝑖𝑡𝑥1 (2) 

Where: 

• 𝑦𝑖𝑡𝑥1 is the hourly log level of pollutant NO2, CO, or PM10 captured by station 𝑖 at hour 𝑡. 

Dependent and main independent variables are considered in logarithms to smooth outliers 

and interpret the results as elasticities. 

• 𝑦(𝑖(𝑡−1))𝑥1 is the first-order autoregressive term. 

• 𝑥𝑗𝑡𝑥2 includes the log and squared log number of hours lost due to road congestion in city 

𝑗 at hour 𝑡.  

• 𝑐𝑗𝑡𝑥𝑓 controls for climatic condition 𝑓, including hourly temperature (measured in kelvin), 

atmospheric pressure (hPa), humidity (%), wind speed (min/sec), precipitation (min), and 

wind direction as a dummy variable that takes the value of one when the wind is coming 

from the north. These climatic conditions are captured at the center of city 𝑗 at hour 𝑡. 

• 𝑚1𝑥𝑤, 𝑑1𝑥𝑒, and  ℎ1𝑥𝑞 control for common variation in air quality for month 𝑤 of the year, 

day of the week 𝑒, and hour of the day 𝑞, respectively. 

• 𝜐𝑖𝑥1 represents the fixed systematic difference of pollutants between stations over time. 

• 𝜀𝑖𝑡𝑥1 is the error term, which is assumed to follow a first-order autoregressive process, and 

𝜂𝑖𝑡𝑥1 follows a normal distribution. 

Then, we use the method proposed by Baltagi and Wu (1999), leveraging a Cochrane–Orcutt 

transformation that allows us to estimate 𝜌 in the first step, to obtain the within estimators of the 

fixed-effects model (i. e., 𝛼, 𝛽, 𝛾, 𝜃, 𝜔, and 𝜓) by applying OLS on the model transformation 

described in Equations 3 and 4: 

 

 �̌�𝑖𝑡𝑥1 = 𝑧𝑖𝑡𝑥1
∗ −  𝑧�̅�𝑥1

∗ +  𝑧̿∗;  ∀ 𝑧: 𝑦, 𝑥, 𝑐, 𝑚, 𝑑, ℎ, 𝑒; ∧ 𝑡 > 1 (3) 

   

 �̌�𝑖𝑡𝑥1 = 𝛼 +  �̌�(𝑖(𝑡−1)𝑥1𝜆1𝑥1 +  �̆�𝑗𝑡𝑥2𝛽2𝑥1 +  �̌�𝑗𝑡𝑥𝑓𝛾𝑓𝑥1 +  �̌�1𝑥𝑤𝜃𝑤𝑥1  +  �̌�1𝑥𝑒𝜔𝑒𝑥1  +  (4) 

                ℎ̌1𝑥𝑞𝜓𝑞𝑥1 +  𝜀�̌�𝑡𝑥1  
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Under the third scenario, i.e., NRCS, road congestion is also generated by events that are not easily 

anticipated, such as road closures and hazards that came about during the same hour. These events 

provide a source of exogenous variation that we use for a robustness check to test the causal 

validity of the results. Thus, we conduct a two-stage least squares (2SLS) estimation to assess the 

impact on each of the three contaminants of road congestion from the road closures and hazards 

reported at a specific hour t. This approach is conducted to confirm that there are no other non-

controlled time varying confounders that are misleading the results.  The first stage and second 

stage estimations are represented by Equations 5 and 6, respectively. 

 

 

 𝑥𝑗𝑡𝑥1 =  𝜏 + 𝑟𝑐𝑗𝑡𝑥1𝜗1𝑥1 +  𝑟ℎ𝑗𝑡𝑥1𝜑1𝑥1 +  𝑦𝑖(𝑡−1)𝑥1𝜍1𝑥1 + 𝑐𝑗𝑡𝑥𝑓𝛾𝑓𝑥1 +  𝑚1𝑥𝑤𝜃𝑤𝑥1  

+  𝑑1𝑥𝑒𝜔𝑒𝑥1 +  ℎ1𝑥𝑞𝜓𝑞𝑥1 +  𝜉𝑗𝑡𝑥1;  ∀ 𝑦 

(5) 

   

 �̌�𝑖𝑡𝑥1 = 𝛼 +  �̌�(𝑖(𝑡−1)𝑥1𝜆1𝑥1 +  �̆̈�𝑗𝑡𝑥2𝛽2𝑥1 +  �̌�𝑗𝑡𝑥𝑓𝛾𝑓𝑥1 +  �̌�1𝑥𝑤𝜃𝑤𝑥1  +  �̌�1𝑥𝑒𝜔𝑒𝑥1   (6) 

                              +  ℎ̌1𝑥𝑞𝜓𝑞𝑥1 +  �̆�𝑖𝑡𝑥1  

 

Where: 

• 𝑟𝑐𝑗𝑡𝑥1 and 𝑟ℎ𝑗𝑡𝑥1are the number of road closures and hazards that occurred in a city 𝑗 at 

hour 𝑡. 

• �̈�𝑖𝑡𝑥2 represents the predicted log delay and its squared term in city 𝑗 at hour 𝑡, obtained 

from the first stage represented by Equation 5.  

• 𝜉𝑗𝑡𝑥1 and 𝜛𝑖𝑡𝑥1 are the idiosyncratic errors, the first assumed to distribute normal and the 

second to follow a first-order autoregressive process. 

• The remaining group of variables has the same definition as in Equations 1-4. 

 

4. Results 

Table 3 presents the overall results. The coefficients in the first row provide statistical evidence 

of a positive effect on all three contaminants during the initial stages of road congestion. We also 

find consistent evidence that this effect is nonlinear, as indicated by the coefficients in the second 

row. In other words, regarding the squared term in Equation 1, the marginal effect is initially 

positive but decreases progressively. Thus, in line with the theoretical framework presented in 

Section 2, traffic delays have a higher impact on overall air quality in a city during the initial stages 

of road congestion. Next, we review these results further by discussing each of the road congestion 

stages defined in Section 3. 

 

4.1. Pre-congestion stage (PCS) 

Right after free-flow conditions break down, a 1% increase in road congestion is associated with 

an immediate rise of 0.13% in CO levels, 0.16% in NO2, and 0.19% in PM10. This is particularly 

relevant given that the standard deviation of road congestion is 94% of the hourly mean value and 

135% of the hourly median value. Meanwhile, a 1% increase in road congestion raises daily 

median levels of NO2 and PM10 by 0.39% and 0.66%, respectively. The impact is considerably 

lower for CO (0.07%). The daily aggregated level of PM10 increases by 0.96%, followed by NO2 
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(0.84%), while the effect on CO is not statistically significant. These results are influenced by the 

temporal dynamics of contaminants throughout the day, which will be addressed later in the paper.  

 

Weather conditions also affect air quality. Our results show that an increase in temperature, 

humidity, wind speed, and rainfall at the city center — where weather conditions are measured in 

our database — are associated with lower values for all three contaminants, and therefore lower 

average pollution levels. The effect is higher for PM10, then NO2, and finally CO. Conversely, an 

increase of atmospheric pressure in the city center is associated with an increase in NO2 and PM10. 

Wind direction is the only climatic variable without a statistically significant effect on air quality 

at the 5% level for any of the air pollutants. This can be attributed to the fact that we analyze four 

cities and several air monitoring stations within each city. If the quadrant where the greatest 

amount of pollution originates differs between cities, wind direction’s effect on air quality at a 

specific location will be mixed. Therefore, variability in the location of air quality monitoring 

stations explains the mixed and non-statistically significant results regarding wind direction. 

Table 3 General results 

  ln(CO) ln(NO2) ln(PM10) 

ln(delay) 0.1261*** 0.1581*** 0.1862*** 

 (0.0035) (0.0088) (0.0095)    

ln(delay), sqr -0.0057*** -0.0066*** -0.0081*** 

 (0.0002) (0.0004) (0.0005)    

Temperature -0.0019*** -0.0032*** -0.0039*** 

 (0.0001) (0.0001) (0.0002)    

Pressure -0.0000 0.0005*** 0.0003*** 

 (0.0000) (0.0000) (0.0001)    

Humidity -0.0002*** -0.0001** -0.0009*** 

 (0.0000) (0.0000) (0.0000)    

Wind speed -0.0028*** -0.0023*** -0.0113*** 

 (0.0001) (0.0004) (0.0004)    

Wind direction -0.0012* 0.0024 -0.0024    

 (0.0006) (0.0016) (0.0020)    

Rainfall -0.0019*** -0.0044*** -0.0102*** 

 (0.0005) (0.0012) (0.0020)    

R2 0.70 0.75 0.73    

Obs 329190 317008 314045    

Notes: Results from the cross-sectional time-series regression model when the disturbance term is 

first-order autoregressive. All estimates include monitoring station, month, day-of-the-week, and 

hour-of-the-day fixed effects. Standard errors in parenthesis. * p<0.1, ** p <0.05, *** p <0.01. 

 

The nonlinear effect of road congestion on ir quality described above suggests that while positive, 

the effect decreases after reaching a threshold and that the value of this threshold can be predicted 

based on levels of road congestion. To illustrate this finding, we conduct consecutive predictions 

of each pollutant for different levels of road congestion, while leaving all weather conditions at 

their average levels (Figure 8). The nonlinear nature of the relationship also suggests that PCS 

alone does not account for road congestion’s overall effect on air quality. 



19 

 

In our tests, the first pollutant to reach the maximum predicted threshold level is CO, at nearly 1.5 

ppm. This happens when the number of cumulative hours of delay approaches 64,000 at a given 

calendar hour. In the case of PM10, this point is reached at 37 μg/m³ when road congestion amounts 

to 98,000 hours. NO2 is the last contaminant analyzed to reach the maximum prediction (18 ppb) 

at approximately 160,000 hours of delay. By way of comparison, the median hourly road 

congestion in all cities during 2019 was almost 40,000 hours, and the 75th percentile was 87,000 

hours. These maximum values are above the average hourly level of road congestion in all four 

cities, consequently, in a ceteris-paribus scenario and under common traffic conditions, it is 

expected that reducing road congestion will most probably end up in air quality improvements. 

Nonetheless, the magnitude of such improvements is not constant along the levels of road 

congestion.  

 

Figure 8 Predicted air quality levels based on changes in road congestion 

 
Source: Prepared by the authors. 
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4.2. Recurrent congestion stage (RCS) 

The above results are for the average impact of road congestion on air pollutants throughout all 

days of the week and all hours of the day during 2019. Given the nonlinear effect we described 

previously, the impact congestion has on air quality will depend on the baseline level of road 

congestion when the increase in delays occurs. Therefore, to test the effect of road congestion on 

air quality, we looked at the times during the day when traffic is higher, which are morning peaks 

form 7:00 a.m. to 10:00 a.m. and afternoon peaks from 4:00 a.m. to 7:00 p.m. (Figure 7). We also 

assessed the impact considering only weekdays, but the results were virtually unchanged whether 

weekends are included or not.  

 

In the RCS, we find robust evidence of a higher impact of road congestion on air quality. An initial 

1% increase in the level of road congestion is associated with a rise of 0.30% in the level of CO 

during the same hour. The figures for NO2 and PM10. are 0.44% and 0.57%. The estimate for the 

squared term is higher and statistically robust. Notably, the predictive power of congestion is 

higher for variations in NO2, less for CO, and almost unchanged for PM10. After controlling for 

weather conditions and seasonal effects, the predictive power of the econometric model increases 

by 6 percentage points for NO2 and decreases by 8 percentage points for CO. This change in 

predictive power is observed even when using a sample, i.e., peak traffic hours. 

 

Average congestion levels are higher during peak hours than during the rest of the day. In Mexico 

City, the average delay per hour during the afternoon peak was 123,750 hours (versus an average 

delay of 74,400 hours for both peak and off-peak hours in 2019). In Bogota, the average peak 

traffic delay per hour was 59,400 hours (versus 38,600), in Buenos Aires 59,000 hours (versus 

35.000), and in Santiago 48,200 hours (versus 22,300). According to the theoretical framework 

presented in Section 2, the baseline effect on air quality should be worse at these times than during 

subsequent hours.  

 

Table 4 Peak-hours results 

  ln(CO) ln(NO2) ln(PM10) 

ln(delay) 0.2970*** 0.4351*** 0.5681*** 

 (0.0091) (0.0197) (0.0317)    

ln(delay), sqr -0.0138*** -0.0192*** -0.0258*** 

 (0.0004) (0.0009) (0.0015)    

R2 0.62 0.81 0.73    

Obs 111694 108052 118288    

Notes: Results from the cross-sectional time-series regression model when the disturbance term is 

first-order autoregressive. All estimates include climatic conditions and stations, month, day-of-

the-week, and hour-of-the-day fixed effects. Standard error in parenthesis. * p<0.1, ** p <0.05, 

*** p <0.01. 

 

4.3. Non-recurring congestion status (NRCS) 

According to Brownfield et al. (2003) and Grant-Muller and Laird (2007), non-recurring 

congestion is caused by events not easily anticipated an hour prior to their occurrence, such as road 

closures and hazards. The results in Table 5 (a) provide evidence of two conditions that validate 

the use of road closures and hazards as strong instruments of road congestion. Indeed, both closures 
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and hazards significantly raise the level of road congestion, with predictive power reaching around 

80%. One additional road closure in the city is associated with a 0.3% increase in road congestion, 

while one additional hazard raises congestion by 0.26%. These estimated effects are consistent in 

the first stage of the 2SLS for all three air pollutants. 

 

Table 5. Two-stage least squares estimation 

(a) First stage 

  ln(CO) ln(NO2) ln(PM10) 

Road closures 0.0030*** 0.0030*** 0.0029*** 

 (0.0000) (0.0000) (0.0000)    

Hazards 0.0026*** 0.0026*** 0.0029*** 

 (0.0000) (0.0000) (0.0000)    

R2 0.78 0.79 0.78 

Obs 325386 313142 311975 

Note: OLS model. All controls included. Standard errors in parenthesis. 

 p<0.1, ** p<0.05, *** p<0.01 

 

(b) Second stage 

  ln(CO) ln(NO2) ln(PM10) 

ln(delay), predicted 0.1204*** 0.0957*** 0.1100*** 

 (0.0063) (0.0155) (0.0171)    

ln(delay), sqr, predicted -0.0049*** -0.0038*** -0.0053*** 

 (0.0003) (0.0007) (0.0007)    

R2 0.70 0.75 0.72 

Obs 325150 312779 310837 

Note: Cross-sectional time-series regression models. All controls included. Standard errors in 

parenthesis. * p<0.1, ** p<0.05, *** p<0.01 

 

The effect found in the second stage confirms that road congestion has a causal effect on air quality. 

In this case, additional delays associated with road closures and hazards generate an initial increase 

of 0.12% in CO, 0.10% in NO2 and 0.11% in PM10. These initial effects on NO2 and PM10 are less 

than the general results presented in Table 3. The squared term is also lower, which indicates that 

the effect during more advanced stages of road congestion diminishes at a slower rate. 

 

4.4. Cumulative effect (CE) 

An aspect relevant to road congestion’s overall impact on air quality is the temporal dynamics of 

contaminants. Figure 9 plots the correlogram, or the autocorrelation and partial autocorrelation 

coefficients, for the 24 hours prior to any time during the day. According to the correlogram, all 

three contaminants follow a similar autoregressive process and are positively and highly correlated 

in 12-hour cycles. During the first 6 hours of the cycle, the decay rate is higher for CO levels, 

followed by NO2 and PM10. The autocorrelation of PM10 is statistically significant during the 24-

hour period. Partial autocorrelations suggest that the effect of congestion on air quality at a given 

point in time starts decreasing after two hours. 
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From the Cochrane–Orcutt transformation represented by Equation 6, we compute the 

autoregressive term of order one of each contaminant along with the first-order process in the error 

term (ρ). The temporal dynamics of contaminants indicate that the cumulative effect from an initial 

1% increase in road congestion causes an increase of 0.59% in CO, 0.55% in NO2 and 0.58% in 

PM10. After that, the cumulative effect depends on the level road congestion reported in the city. 

According to the correlogram, these effects accumulate faster for CO and NO2 but slower 

for PM10.  

Figure 9 Temporal dynamics of contaminants 

 
Note: Shaded area denotes 95% confidence intervals. 

Source: Prepared by the authors. 

 

4.5. Exploring city heterogeneity: A closer look at Bogota 

 

To analyze whether the relationship between road congestion and air quality changes thoughout 

the city, we look at different geographic areas in the city of Bogota. As air monitoring stations 

report hourly climatic conditions at their locations, it is possible to estimate the impact of 

congestion on air quality using data from a variety of stations geographically distributed across the 

city (Figure 10). Furthermore, the data recorded by the Air Quality Monitoring Network of Bogota 

(RMCAB, by its acronym in Spanish) enables analyzing the impact of congestion on PM2.5, NO, 

and NOx.  
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Figure 10. Air quality monitoring stations according to geographical areas in Bogota. 

(a) Center (b) West 

  
(c) North (d) South 

   
Source: Prepared by the authors. 

 

To avoid the possible bias caused by outliers, Figure 11 presents the median concentration of 

particulate matter and contaminant gases during 2019 in each urban area. The highest levels of PM 

were observed in the western area, with a median of 21 micrograms per cubic meter in PM2.5 and 

40 in PM10: 50% and 43% higher, respectively, compared with the second most affected area.  

 

The western area also registered the highest levels of NO, NO2, and NOx. The median of NOx in 

this area surpassed 40.5 ppb, while the least affected area, the southern area, registered a median 

of 12 ppb  (a 70% lower). In the case of CO, the central area was the most affected with 1.1 ppm, 

much above the western, southern, and northern areas, which registered levels between 0.6 and 0.7 

ppm.  
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Figure 11. Median of contaminants concentration according to urban areas in Bogota 

 
Source: Prepared by the authors. 

 

Next, we used a simplified version of the econometric model presented in Section 3 and developed 

a sensitivity analysis to compare the behavior of traffic congestion and contaminants in different 

areas of the city. For this, we considered the logarithm of traffic congestion. Table 6 presents the 

results of the analysis. Colors in the table show the degree of sensitivity by contaminant throughout 

the city, with red meaning higher and green meaning lower sensitivity, respectively. PM had a 

higher sensitivity to road congestion in the central and northern areas of Bogota. The elasticity for 

PM2.5 was between 0.05 and 0.07 when considering all four areas. In turn, the range of elasticity 

for PM10 was broader, with values between 0.02 and 0.06. NOx showed a higher sensitivity to 

road congestion in the central area of the city. The sensitivity of CO was higher in the western 

area. NO gases had the highest sensitivity to road congestion when considering all areas. 

Conversely, PM10 appeared to be the most inelastic among the analyzed contaminants. 
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Table 6. Comparative sensitivity across urban areas of Bogota 

Contaminant Center North West South 

PM2,5 0.067 0.062 0.053 0.063 

PM10 0.048 0.063 0.036 0.019 

NO 0.153 0.111 0.075 0.074 

NO2 0.059 0.046 0.048 0.042 

NOX 0.195 0.081 0.062 0.052 

CO 0.028 0.030 0.043 0.021 

Note: Linear slope of time series model with fixed effects.  

Temporal controls included. All results are statistically significant at 1%. 

 

5. Discussion 

This paper builds on recent academic literature to provide evidence regarding the causal 

relationship between congestion and pollution in development contexts, with valid quantitative 

results for four of the most congested cities globally, located in Latin America, after controlling 

for all heterogeneity in urban characteristics. We estimate the sensibility of air quality to urban 

road congestion and provide a policy discussion grounded on the findings.   

The results from the econometric approach validate growing concerns about rising congestion 

levels in cities around the world, particularly in developing countries. Not only does congestion 

generate a monetary cost and result in lost productivity, it also impacts the environment and quality 

of life in urban settings. Yet policymakers are facing strong resistance to implementing bolder 

measures to reduce congestion. Because of a lack of knowledge, traffic mitigation policies aiming 

to reduce car usage in highly congested areas often gain limited acceptance. It is therefore key to 

grow the body of available empirical evidence to support more effective actions to revert — or at 

least contain — the negative trends of rising motorization rates, higher congestion levels, and 

lower environmental sustainability. 

This research helps bridge the knowledge gap by estimating the relationship between congestion 

and air quality in four of the most populous and congested cities in Latin America and the 

Caribbean. By processing more than 4.4 billion crowdsourced traffic records from the entire urban 

areas of Bogota, Buenos Aires, Mexico City, and Santiago, we show that a 1% initial increase in 

hourly road congestion increases CO by 0.13%, NO2 by 0.16%, and PM10 by 0.19% during the 

same hour. Moreover, the cumulative effect over time of that initial increase is 0.60% for all three 

contaminants. To gauge the relevance of this effect, consider the average daily level of road 

congestion in the four cities, which is approximately 58,000 hours, and its standard deviation of 

54,000 hours (94% of the mean). The average hourly levels of the contaminants are 0.52 ppm of 

CO, 21 ppb of NO2, and 35 μg/m³ of PM10. Thus, an initial increase in road congestion of one 

standard deviation would raise CO by 0.29 ppm, NO2 by 12 ppb, and PM10 by 18 μg/m³ in PM10 

in the same hour.  
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These results are particularly relevant given the public health impact of worsening air quality 

(Zhanga and Batterman, 2013). ECLAC (2021) estimated that an average increase of 10 μg/m³ of 

PM10 and PM2.5 is associated with increases in mortality of 0.4% and 0.7%, respectively. 

Analyzing mobility restrictions implemented to contain the COVID-19 pandemic in Bogota, 

Blackman (2021) calculated that between March 2020 and February 2021, around 115 premature 

deaths were avoided, a 31% reduction from the 371 deaths that would have occurred in the short 

term under normal conditions. Our related research provides statistical evidence that, under a 

ceteris-paribus scenario and common traffic conditions, reducing road congestion can potentially 

decrease the concentrations of CO, NO2, and PM10 in the air, which would help improve public 

health in Latin America’s cities.  

It should be carefully acknowledged that not all traffic mitigation policies will enhance air quality 

if these policies produce counterproductive consequences. For instance, a congestion mitigating 

policy may increase air pollution when causing increments in vehicle miles traveled, unfavorable 

travel schedule substitution, or higher vehicle ownership to avoid circulating restrictions (Ortúzar, 

2019; Barahona et al., 2020). For instance, Zhang et al. (2017) analyzed the consequences of 

driving restrictions in Bogota which were designed to control congestion and urban air pollution. 

The authors developed a theoretical model and implemented an impact evaluation proving 

evidence that license plate-based driving restrictions can have diverse effects on air pollutants; 

specifically, it can generate a significant decrease in NO but an increase in NO2, NO𝑥 and O3. 

Our research also shows that road congestion has lingering effects on air quality. Given the 

temporal dynamics of this effect and the relationship’s nonlinear nature, policymakers should 

especially focus on policies that mitigate congestion at its initial stages, when free-flow conditions 

start to break down, since this is the most effective time to prevent deterioration of air quality. In 

addition to helping make the general case for reducing congestion to improve air quality, our study 

has implications for how policies and programs could be timed to enhance their efficiency. Of 

course, reducing congestion requires integrated "pull" and "push" policies (Wang et al., 2022). 

Pull strategies try to increase public transportation ridership, while push measures involve 

dissuading people from using private vehicles in congested conditions. This research supports 

policymakers as they develop push policies that are politically difficult to implement but can 

provide great social benefits (Ortúzar et al., 2021). In developed countries, new types of policies 

such as road pricing have successfully reduced excessive use of private cars (Ortúzar, 2019).  

Finally, since transportation is one of the most critical contributors to climate change, representing 

23% of CO2 emissions related to energy use worldwide, the sector is among the most critical for 

achieving the 2030 targets for limiting global warming to 1.5°C (WB, 2016; United Nations, 

2019). Furthermore, the main sources of NO2 are related to transportation (EPA, 2018), and our 

findings point out that road congestion is critically relevant for reducing concentrations of NO2 

levels in urban settings. This research highlights the previously unexplored impact of road 

congestion on this contaminant, which is essential to the formation of harmful levels of O3, another 

greenhouse gas. Understanding the relationship between urban road congestion and NO2 levels is 

not enough but necessary to provide comprehensive information supporting policy decisions to 

tackle climate change through actions focused on urban traffic. 
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6. Conclusions 

This study leverages highly disaggregated big data and uses panel-data econometric models to 

estimate the effect of road congestion on CO, NO2, and PM10 and explore the temporal dynamics 

of the effect for four of the most congested cities in Latin America. The approach allowed us to 

rule out fixed confounders between and within cities by using hourly data at the air monitoring 

station level while controlling for traditional confounders previously reported in the literature. We 

confirm causality using a 2SLS approach. We find statistical evidence on the impact of road 

congestion on all three contaminants. Moreover, we find that the effects are lingering and thus 

accumulate over the following hours. Finally, we report that the relationship is nonlinear and 

predict the thresholds after which the effect decays. These results are expected to inform and 

support public policy to develop more sustainable mobility in highly populated, highly congested 

cities in developing countries. Further research opportunities include applying this methodology 

to other cities in developing contexts, as well as evaluating the impact of congestion mitigation 

policies on air pollutants. 
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