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Abstract 

We investigated the predictability of the Brazilian exchange rate at High Frequency (1, 5 

and 15 minutes), using local and global economic variables as predictors. In addition to the 

Linear Regression method, we use Machine Learning algorithms such as Ridge, Lasso, 

Elastic Net, Random Forest and Gradient Boosting. When considering contemporary 

predictors, it is possible to outperform the Random Walk at all frequencies, with local 

economic variables having greater predictive power than global ones. Machine Learning 

methods are also capable of reducing the mean squared error. When we consider only 

lagged predictors, it is possible to beat the Random Walk if we also consider the Brazilian 

Real futures as an additional predictor, for the frequency of one minute and up to two 

minutes ahead, confirming the importance of the Brazilian futures market in determining 

the spot exchange rate. 
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1. Introduction

It is practically a consensus in the literature that foreign exchange rates

are hard to predict. Meese and Rogoff (1983) showed that traditional macroe-

conomic models do not outperform a naive random walk in pseudo out-of-

sample forecasting exercise, in medium and short-term prediction horizons

(one month to one year). Cheung et al. (2005) and Rossi (2013) evaluated

the models developed in the following decades and conclude that no model

performed very well: exchange rates predictability, for some models, depend

on the choice of forecast horizon, exchange rates, sample period and the

toughest benchmark to beat is the random walk without drift. In general,

the macroeconomic models used in these studies make use of macroeconomic

variables available only at low frequencies.

At higher frequencies, Evans and Lyons (2002) opened a new research

area: how microstructure (order flows) affects the exchange rates. Evans

and Lyons (2005) showed that daily customer order flow, from one day to

one month, can beat the Random Walk in a real out-of-sample setup, same

conclusion as Rime et al. (2010) with daily data. However, in opposition,

Danielsson et al. (2012) concludes that predictability is only valid at higher

frequencies (intraday data).

In this paper we go in a complementary direction to the micro-structure

literature. Our contribution to the literature is to evaluate the predictability
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of the Brazilian exchange rate1 at high frequency (1, 5 and 15 minutes) using

high frequency local and global economic variables, namely: short and long-

term Brazilian interest rates, Brazilian stock market index, gold price, oil

price, stock market option-based implied volatility (VIX) and exchange rates

of 17 other countries. In addition to the linear regression method, we also

evaluate the use of Machine Learning algorithms such as Ridge, Lasso, Elastic

Net, Random Forest and Gradient Boosting in the prediction exercises.

We choose the variables based on their availability in the desired frequency

(maximum frequency of 1 minute) and their possible relationship with the

Brazilian exchange rate. For example, short and long-term interest rates

on Interbank Deposit (DI) contracts reflect expectations regarding monetary

and fiscal policy, both of which affect the exchange rate. The relationship

between the stock exchange and the exchange rate is also a recurrent theme

of research, as in Tabak (2006). Ferraro et al. (2015) conjecture that, in

small open commodity-exporting economies, the exchange rate is expected

to reflect the movement of commodity prices. Beckmann et al. (2017) also

shows that oil price is a potentially exchange rate predictor for the short run.

We can also see VIX as a measure of uncertainty (Bekaert et al. (2013)),

1

The Brazilian case is interesting since its exchange rate is floating according to the IMF
classification, Brazil is one of the largest emerging economies, and the Brazilian Real has
shown high volatility and moments of great depreciation in recent years, with significant
impacts on the macroeconomic environment. However, exchange rate forecasting papers
for the Brazilian currency focus on monthly and daily frequencies, as in Gaglianone and
Marins (2017) and Moura et al. (2008).
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and it can explain part of the daily variation of the nominal exchange rate

(Kohlscheen et al. (2017)). Motivated by Feĺıcio and Rossi Júnior (2014),

who extract common factors from a set of floating exchange rates and assess

their predictive capacity, we consider 17 foreign exchange rates as possible

predictors. We also investigate gold as a possible predictor, due to a possible

bi-directional causal relationship with exchange rates in emerging countries

(Gürış and Kiran (2014), Nair et al. (2015)).

We perform two types of forecasting exercises. The first, called out-

of-sample fit, uses contemporary data as predictors (realized values of the

predictors variables). This type of analysis captures correlations or co-

movements. As put by Ferraro et al. (2015) in the forecasting literature,

this type of prediction can be useful when we are interested in evaluating the

predictive capacity of a model given a trajectory for some unmodeled set of

variables. In other words, if it is possible to obtain a good model to predict

this variable, then this model can be exploited to predict the exchange rate.

Important examples of its use are the Meese and Rogoff (1983) and Cheung

et al. (2005), which showed that, even using realized values of the predictors

variables, traditional models were unable to beat the Random Walk in the

exchange rate prediction. The second exercise is the real out-of-sample fore-

cast, in which we seek to forecast the exchange rate at t+1 using information

available only up to t.

We verified that, in the out-of-sample fit exercise, for each variable, it

is possible to predict the Brazilian exchange rate at high frequency with
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less error than the Random Walk. We also verified that the local economic

variables present lower mean squared error than the global variables. The

augmented model, considering all variables, outperforms all individual mod-

els. Machine learning models further reduce the MSE when we apply them

to the augmented model. When applying the Gradient Boosting, we also

estimate the relative importance of each predictor, showing that the order

of importance of the predictors changes according to the frequency consid-

ered, with Ibovespa, short-term interest rates and the Mexican exchange rate

occupying the top positions.

However, no model maintains the predictive capacity in the real out-of-

sample forecasting exercise, except when we also consider the Brazilian Real-

U.S. dollar futures as an additional predictor variable. In this case, for some

models, it is possible to beat the random walk at frequencies of 1 minute and

for 1 and 2 minutes ahead. As stated by Ventura and Garcia (2012), in Brazil,

the exchange rate is firstly determined at the exchange rate future market

(the next maturity), and transmitted by arbitrage to the spot market. So,

another contribution of this paper is to show how this relationship translates

into out of sample prediction ability at high frequency.

In relation to the use of Machine Learning techniques, our paper differ

from works like Colombo and Pelagatti (2020), Zhang and Hamori (2020)

and Amat et al. (2018) in terms of frequency and set of economic variables.

At high frequency, most works use technical trading strategy or univariate

strategies for prediction, such as Manahov et al. (2014), Palikuca and Seidl
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(2016), or combine microstructure with Machine Learning, as Choudhry et al.

(2012). We differ from these evaluating a different set of predictors and

benchmarking against random walk.

The paper is structured as follows. In Section 2 we describe the database.

In Section 3 we present the models used for prediction and the methodology

used to determine the parameters and hyper-parameters. In Section 4 we

present and discuss the results of the out-of-sample fit and real out-of-sample

prediction exercises. Section 5 concludes.

2. Data

We use intraday data from 2021-05-05 to 2021-11-12 (128 business days),

1 minute frequency (closing prices), from Bloomberg, resulting in a total of

46,080 observations. For exercises on frequencies of 5 and 15 minutes, we

re-sample the data. On each day, the interval considered is from 10:00 am to

4:00 pm. Although the Brazilian foreign exchange market operates from 9:00

am to 6:00 pm, the stock exchange opens at 10:00 am and the negotiation of

future interest rates contracts is halted at 4:00 pm.

Our interest is in forecasting the Brazilian Real/U.S. dollar nominal spot

exchange rate. As candidates for predictor variables, we consider, for short

and long-term interest rates, DI Futures contracts maturing in January 2023

(DI23) and January 2029 (DI29). The DI futures underlying asset is the

average daily interest rate of interbank deposits (DI). The notional value of

one DI future contract is R$100 thousand, and the value on the trade date
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is equivalent to this amount discounted at the negotiated rate. This rate

reflects the expected evolution of the DI, that is, the expectations regarding

the future interest rate (Vartanian et al. (2021)). As stated by Jeanneau et al.

(2007) the Brazilian futures market is one of the main indicators of interest

rates expectations, with the yield curve implicit in DI futures being the main

benchmark for fixed income investment in Brazil. As a representative of the

back end of the yield curve, we chose the contracts maturing in 2029 because

they are the most liquid of the longer term futures contracts.

For oil price we use the West Texas Intermediate (WTI) crude oil price.

The stock market index used was the Ibovespa from São Paulo Stock Ex-

change. We also include the gold price and the Chicago Board Options

Exchange Volatility Index (VIX). For the true out-of-sample exercise, we use

as predictor the Brazilian Real/U.S. dollar futures (next maturity).

We selected other 17 nominal exchange rates as predictors based on the

following criteria: they are floating exchange rates; they are traded at the

same times as the Brazilian exchange rate; they are from countries (and eco-

nomic alliances) that have a GDP of at least 10% of the Brazilian GDP.

The countries and economic alliances that met these criteria were: Australia

(USDAUD), Canada (USDCAD), Czech Republic (USDCZK), Euro Area

(USDEUR), Israel (USDILS), Japan (USDJPY), Mexico (USDMXN), New

Zealand (USDNZD), Norway (USDNOK), Poland (USDPLN), Russian Fed-

eration (USDRUB), South Africa (USDZAR), Sweden (USDSEK), Switzer-

land (USDCHF), Thailand (USDTHB), Turkey (USDTRY) and England
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(USDGBP).

So as to achieve stationarity, all variables are in (log) first differences.

Only intraday differences are considered, that is, day-to-day differences are

discarded.

3. Methods

In the next subsection, we present the models considered in this paper,

followed by the strategy for determining the parameters and hyperparame-

ters, as well as the performance evaluation methods used.

3.1. Exchange Rate Forecasting Model

Let st be the logarithm of the exchange rate, our interest is in predicting

the change in the logarithm of the exchange rate one step ahead, that is,

∆st+1 = st+1 − st. Let xt+1 be a set of predictors, with information up to

t+ 1, then our general out-of-sample fit prediction model is defined by:

∆st+1 = f(xt+1) + εt+1 (1)

where f() is a mapping to be estimated, and εt+1 is the prediction error. Note

that the out-of-sample fit exercise use contemporary data (realized values of

the predictors variables) 2.

The model of our second exercise, out-of-sample forecasting, is defined

by:

2Note that this is not an in-sample prediction exercise, as xt+1 will not be used for
parameter prediction.
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∆st+1 = f(xt) + εt+1 (2)

where f() is also a mapping to be estimated and xt a set of predictors with

information only up to t.

For both exercises, we initially evaluate the predictive power of the vari-

ables using f() as a Linear Regression Model, estimated on a rolling window,

as presented in Subsection 3.2. So the forecasting model is defined, for the

out-of-sample fit exercise, by:

∆sft+1 = x′
t+1β̂ (3)

where β̂ is a k × 1 vector of parameters to be estimated, and xt+1 a k × 1

vector of the predictors, including a constant term. For the out-of-sample

forecasting exercise, the Linear Regression Model is defined by:

∆sft+1 = x′
tβ̂ (4)

For both the out-of-sample fit and out-of-sample forecasting exercises, we

initially look at the individual predictive capabilities of the variables con-

sidered in this paper. Next, we group some of the variables, testing what

we call augmented models. When increasing the models, we also start to

consider for the regression f() Machine Learning methods such as LASSO,

Ridge, ElasticNet, Random Forest, Support Vector Regression and Extreme

Gradient Boosting, described below. Equations (3) and (4) are also valid for
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regularized linear Machine Learning Models, differing, for each model, the

form of estimation of β̂, as will be seen in the next subsections.

3.1.1. Ridge

According to Masini et al. (2020), Ridge regression, proposed by Hoerl

and Kennard (1970), seeks to combat problems generated by multicollinearity

in Linear Regression, stabilizing the problem solution by introducing a small

bias in exchange for reducing the variance of the estimator. Ridge penalizes

the regression by the L2 norm of the parameter vector. Therefore, β̂ of the

equations (3) and (4) are determined by 3:

β̂ = argmin
β1,...,βk

 1

T

T∑
t=1

(
∆st+1 −

k∑
j=1

xj,tβj

)2

+ λ
k∑

j=1

β2
j

 (5)

We determine λ, also called hyperparameter in Machine Learning liter-

ature, by cross-validation, as we present in the Subsection 3.2, or through

the use of information criteria such as AIC or BIC. The greater the λ, the

greater the shrinkage of the coefficients. For λ = 0 the model collapses to an

OLS.

According to Zou and Hastie (2005), empirically it has been observed bet-

ter performance of Ridge in relation to LASSO in the presence of significant

multicollinearity of the predictors. However, Ridge does not generate parsi-

monious models: the least relevant predictors have their coefficients shrunk

3In the Ridge, Lasso and Elastic Net descriptions, we use the notation used by Costa
et al. (2021).
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towards zero, but never exactly zero.

3.1.2. LASSO

LASSO (Least Absolute Shrinkage and Selection Operator), proposed by

Tibshirani (1996), penalizes the regression by the norm L1 of the parameter

vector β̂. That is, β̂ of the equations (3) and (4) are determined by:

β̂ = argmin
β1,...,βk

 1

T

T∑
t=1

(
∆st+1 −

k∑
j=1

xj,tβj

)2

+ λ
k∑

j=1

|βj|

 (6)

Given the penalty by the l1 norm, the solution to the problem is sparse.

So, in addition to performing shrinkage, LASSO selects variables, zeroing

out the irrelevant coefficients. As such, it is one of the most popular reg-

ularization methods in data-rich environments (Masini et al. (2020)). As

in Ridge, λ = 0 leads to OLS and the determination of λ can be done by

cross-validation or through the use of information criteria such as AIC or

BIC.

3.1.3. Elastic Net

Proposed by Zou and Hastie (2005), Elastic Net’s idea is to combine the

advantages of Ridge and LASSO, where β̂ is determined by:

β̂ = argmin
β1,...,βk

 1

T

T∑
t=1

(
∆st+1 −

k∑
j=1

xj,tβj

)2

+

λ

(
α

k∑
j=1

β2
j + (1− α)

k∑
j=1

|βj|

)  (7)
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with α ∈ [0, 1], that is, the Elastic Net penalty is a convex combination

of the L1 penalties, which performs variable selection, and the L2 penalty,

which stabilizes the solution of the problem (Masini et al. (2020)). λ, in

turn, determines the overall strength of the penalties. Note that Ridge and

LASSO regressions are special cases of Elastic Net, for α = 1 and α = 0

respectively.

Simulation studies have shown that Elastic Net has better predictive

power than LASSO, while maintaining a similar sparse representation (Zou

and Hastie (2005)).

3.1.4. Random Forest

Proposed by Breiman (2001), Random Forest is basically an ensemble of

decision trees. Decision trees recursively partition the variables domain into

rectangular regions, without overlapping and each region Ri is associated

with a constant value in the case of a regression problem, so that visually

they are step functions:

f(x) =
∑
i

ciI(x ∈ Ri) (8)

In the Random Forest, each tree is built based on a bootstrap sample of

training data. For each tree, the following steps are repeated for each terminal

node, until a certain stopping criterion is met (for example, controlling the

maximum depth or number of leaves) (Friedman (2017)):

(i) Randomly select l variables from the available k variables;

14



(ii) Select the best variable / split-point among the l variables (the com-

bination variable / split-point that minimizes the mean squared error)

and split the node into two child nodes.

Let B be the number of bootstrap samples, the ensemble of trees {Tb}B1

is stored, and the prediction about a new point x is given by the average of

each tree prediction:

∆sft+1 =
1

B

B∑
b=1

Tb(xt) (9)

where Tb(x) is the prediction of the b-th regression tree. That is, the general

idea of Random Forest is to generate an average from several unbiased noisy

models (trees), as in bagging (bootstrap aggregation), but reducing the cor-

relation between the trees, so that the variance of the average is reduced.

This is achieved by randomly selecting sets of variables in each division of

the tree (Friedman (2017)).

3.1.5. Gradient Boosting

Proposed by Friedman (2001), Gradient Boosting is based on ‘weak learn-

ers’, trees with low predictive power, in an additive, step-by-step model. At

each step, a weak learner is trained to compensate the constraints of previous

weak learners. We can illustrate its operation with the algorithm presented

in Friedman (2017), Section 10.10. For a loss function L(y, f(x)), N obser-

vations in training data, M weak learners:

1. Initialize the optimal constant model, which is just a simple terminal
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node of a tree: f0(x) = argminγ =
∑N

i=1 L(yi, γ);

2. For m = 1, 2, ...,M :

(a) For i = 1, 2, ..., N compute:

rim = −
[
∂L(yi, f(xi))

∂f(xi)

]
f=fm−1

(b) Fit a regression tree to the targets rim, giving terminal regions

Rjm, j = 1, 2, ..., Jm.

(c) For j = 1, 2, ..., Jm compute:

γjm = argmin
γ

∑
xi∈Rjm

L(yi, fm−1(xi) + γ)

(d) Update fm(x) = fm−1(x) +
∑Jm

j=1 γjmI(x ∈ Rjm)

3. The final forecast will be given by fM(x)

In this work we use the Extreme Gradient Boosting (XGB) version devel-

oped by Chen and Guestrin (2016), which is an improved version of Gradi-

ent Boosting, both with regard to predictive performance and computational

performance 4.

4For example, regressions trees can include a regularization parameter, which influences
the pruning tree mechanism, acting against overfiting, also reducing the sensitivity of
predictions to individual observations. The algorithm is also known for optimizations for
large datasets. For example, it can use an Approximate Greedy Algorithm, which does not
test every possible threshold on each split of a tree, but instead use quantiles as candidate
thresholds for each split. Using Parallel Learning, it also allows the dataset to be split
across multiple computers at the same time. It also innovates with a native mechanism
to build trees even when there are missing values (Sparsity-Aware Split Finding). It also
seeks to optimize the use of computer hardware, for example, by storing gradients in
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3.1.6. Support Vector Regression

Support Vector Regression (SVR) extends the concepts used by Support

Vector Machines (SVM) in classification to regression problems. The idea is

to form a ‘tube’ or ‘band’ around the actual regression function that contains

most of the observations. We initially consider the linear case. Let the true

Linear Regression function:

µ(x) = β0 + x′β (10)

Define the following loss function (linear ε-Insensitive Loss Function):

Lε
1(y, µ(x)) = max{0, |y − µ(x)| − ε} (11)

That is, if the point (x, y) is such that |y − µ(x)| ≤ ε, then the loss is

zero, and if |y − µ(x)| > ε, the loss is |y − µ(x)| − ε.

Points not inside the ‘tube’ are described by slack variables, ξ′i and ξj.

Define ξ′i and ξj such that if the point lies above ε-tube, then ξ′i = yi −

µ(xi) − ε ≥ 0, and if it is below, then ξj = µ(xj) − ε − yj ≥ 0. For points

inside ε-tube, the slack variables have a zero value. The primal optimization

problem is to find β0, β, ξ
′
1, ..., ξ

′
n and ξ1, ..., ξn for:

the processor’s cache, so that it can more quickly calculate the scores used to define the
split points of trees (Cache-Aware Access). It is also able to natively use techniques such
as Sharding, which divides data between more than one storage unit in order to access
them in parallel (Blocks for Out-of-Core Computation). Due to these characteristics -
some of them implementation-specific and not related to statistics - which considerably
improve the execution time, XGB is one of the favorite algorithms in Machine Learning
competitions (Costa et al. (2021)).
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minimize
1

2
||β||2 + C

n∑
i=1

(ξ′i + ξi)

subject to yi − (β0 + x′
iβ) ≤ ε+ ξ′i

(β0 + x′
iβ)− yi ≤ ε+ ξi

ξ′i ≥ 0, ξi ≥ 0, i = 1, 2, ..., n

(12)

The solution to this problem is detailed in chapter 11 of Izenman (2008),

and produces a linear function of x surrounded by a tube of radius ε. Points

that do not fall into the tube are called support vectors. The formulation can

also be extended to the non-linear case, through the use of kernels such as

the radial basis function. In our exercises, we use the non-linear version of

the SVR. C acts as a regularization parameter and, together with ε, are the

SVR hyperparameters that can be determined by cross-validation.

3.2. Parameters and Hyper-parameters determination

For both Linear Regression and Machine Learning models, we estimate

the model parameters by a rolling window, as follows: we split the data into

training data, which correspond to the first half of the observations, and

test data, the final half. We estimate the model parameters on the training

data, and then the prediction of the next observation is made. The next

observation of the testing data is then incorporated into the training data,

the original first observation of the training data is discarded, we re-estimate

the parameters over this rolling window, and we perform a new one-step-

ahead prediction. We repeat this process until the rolling window has cycled
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through all of the test data.

In the case of Machine Learning models, we determine the hyperparam-

eters in three different ways 5. For Ridge, LASSO and Elastic Net, when

each rolling window advances one step, a grid search algorithm tests possible

hyperparameter combinations as follows: for each hyperparameter combi-

nation, we determine the model parameters over 62.5% of the initial rolling

window observations and use them to predict the 12.5% of subsequent rolling

window observations. We compute and store the mean squared error and re-

peat the process using 75% of the initial rolling window data for parameter

estimation, with the prediction performed on the 12.5% of the following data,

computing and storing the MSE. We repeat the process again, using 87,5%

of the rolling window data for parameter estimation and the last 12,5% for

prediction, so that all the rolling window observations are used. We select

the combination of hyperparameters that presents the smallest mean squared

error for the final estimation of the parameters over the entire rolling window

/ training data.

For algorithms with higher computational costs, such as Random Forest,

Extreme Gradient Boosting and Support Vector Regression, we perform the

process described in the previous paragraph only once, on the initial training

data. In other words, the hyperparameters are not determined again at each

advance of the rolling window: we determine them at the beginning of the

5We look for the best ways to determine hyperparameters given the restrictions in
terms of computational costs.
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process and we use same hyperparameters for every advance of the rolling

window. We also use this strategy for Ridge, LASSO and Elastic Net for

comparison purposes.

In the case of LASSO, as a third way of determining hyperparameters, we

also use the information criteria AIC and BIC. For the Ridge, LASSO and

Elastic Net methods, in which we use more than one method to determine

the hyperparameters, we report the results of the method with the smallest

mean squared error.

3.3. Model Valuation

The Random Walk without drift is used as the benchmark, the model to

beat. It corresponds to the forecast of no change in the exchange rate one

step ahead, that is:

∆sft+1 = 0 (13)

For the Random Walk and for the estimated models, the mean squared

errors (MSE) are computed and the ratios between the MSE of the models

in relation to the Random Walk are reported. That is, values lower than 1

for this ratio suggest a better predictive capacity of the model in relation to

Random Walk.

We apply the Diebold and Mariano test (Diebold and Mariano (1995))

to determine whether the model forecasting compared to the random walk

forecasting are statistically different.
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4. Results

Initially, we present the results for the out-of-sample fit exercise, and then

the results for the out-of-sample forecasting exercise.

4.1. Out-of-sample-fit results

Table 1 presents the results of the out-of-sample fit prediction exercise

of the Brazilian exchange rate, for frequencies of 1, 5 and 15 minutes, using

Linear Regression and also Machine Learning algorithms for the augmented

model. If it is possible to predict the values of any of these variables - changes

in future interest rates, Ibovespa, oil price, VIX, gold price, or some of the 17

exchange rates considered - in t+1 (perfect foresight), then it is also possible

to predict the Brazilian exchange rate at high frequency with less error than

the Random Walk, for all frequencies tested, with exception for gold as a

predictor for the 15-minute frequency 6.

Regarding the Ibovespa, our results on the intraday frequency are com-

patible with the conclusions of Tabak (2006) for the daily frequency, who

found Granger causality from stock prices to the exchange rate. For oil price

as a predictor, our results in high frequency are similar to Ferraro et al.

(2015) in the Canadian dollar forecasting at daily frequency. For long-term

interest rates and VIX, our intraday results are consistent with Rossi Júnior

(2014) results for the weekly frequency.

6We do not consider Brazilian Real-U.S. dollar futures in our out-of-sample fit exercise,
as we already know of its natural correlation with the spot exchange rate by the non-
arbitrage relationship imposed by the Covered Interest Rate Parity.
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Table 1: Brazilian real / dollar nominal spot exchange rate forecasting exercise, out-of-sample fit results.

MSE ratio, h = 1 step ahead

Predictors Method freq. 1 min freq. 5 min freq. 15 min

DI23, DI29 Linear Regression 0.8146*** 0.7332*** 0.7316***

Ibovespa Linear Regression 0.7942*** 0.7618*** 0.8095***

Oil price Linear Regression 0.9816*** 0.9812*** 0.9765**

VIX Linear Regression 0.9654*** 0.9321*** 0.9375***

Gold price Linear Regression 0.9717*** 0.9729*** 0.9770

17 currencies Linear Regression 0.8250*** 0.7943*** 0.8017***

DI23, DI29, Ibovespa Linear Regression 0.7063*** 0.6401*** 0.6777***

DI23, DI29, Ibovespa,
Oil price, VIX,
Gold price

Linear Regression 0.6815*** 0.6119*** 0.6428***

DI23, DI29, Ibovespa,
Oil price, VIX,
Gold price,
17 currencies

Linear Regression 0.6264*** 0.5626*** 0.5843***
LASSO 0.6260*** 0.5312*** 0.5449***
Ridge 0.6203*** 0.5347*** 0.5478***

ElasticNet 0.6825*** 0.5310*** 0.5444***
SVR 0.6761*** 0.5608*** 0.5802***
RF 0.6192*** 0.5515*** 0.5515***
XGB 0.5991*** 0.5349*** 0.5425***

MSE ratios in relation to Randow Walk without drift. ***, ** and * indicate rejection of the
null hypothesis (model and Random Walk predictions are not different), at the 1%, 5% and
10% levels respectively. DI23 and D29 correspond to Interbank Deposit interest rates futures
contracts maturing in January 2023 and January 2029. The 17 currencies correspond to the
nominal foreign exchange rates listed in the section 2.
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It is interesting to note that the global variables - oil price, gold price

and VIX - have predictive power in this out-of-sample fit exercise, but to a

lesser extent, as would be expected, than the local variables (short and long

term interest rate futures and Ibovespa), which absorb local news that also

impact the exchange rate.

Table 1 also presents the same exercise, but with grouping of variables:

first, we test as predictors the set of local variables (interest rate futures -

DI23, DI29 - and Ibovespa). We note that the forecast performance improves

compared to previous results. By adding the global variables - oil price, gold

and VIX - we further reduced the MSE compared to random walk. And,

when we add the 17 exchange rates considered in this work, we reach the

best prediction performance using Linear Regression as a method, for all

frequencies considered.

We also tested the performance of Machine Learning algorithms for the

last specification, containing all available variables. The idea is to verify if,

in the possibility of predicting the covariates and then predicting the ex-

change rate, Machine Learning algorithms could be useful in improving the

forecasting performance. We can see that, in general, they present better re-

sults than Linear Regression, with emphasis on Extreme Gradient Boosting,

which presents the best result in two of the three frequencies tested, with

Elastic Net with the best performance in the 5-minute frequency 7.

7It is important to point out that this result does not determine a final ranking of Ma-
chine Learning algorithms for this application, as the result depends on the methodology
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Figure 1: Out-of-sample fit XGB predictors importance, 1 minute frequency.
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Figure 2: Out-of-sample fit XGB predictors importance, 5 minutes frequency.
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Algorithms based on regression trees such as Random Forest or Extreme

Gradient Boosting can automatically provide estimates of the importance of

each predictor. By importance we can understand how useful each variable

was in reducing the MSE during the construction of trees in the algorithm

training stage 8. We present in figures 1 to 3 the average relative importance

attributed by XGB to each predictor, for the frequencies of 1, 5 and 15

minutes.

It is interesting to note that for the 1 and 5 minute frequencies, the

two most important variables are Ibovespa and the short-term interest rate

(DI23), with the Mexican exchange rate in third place, indicating how the

similarity with the Brazilian economy is reflected in the high-frequency ex-

changes rates co-movements. It is also interesting to highlight, in all frequen-

cies, the importance attributed to the South African and Russian exchange

rates, the two BRICS countries available in our database.

The importance of the long-term interest rate (DI29) grows with the

decrease in frequency, becoming the third most important variable in the

15-minute frequency, behind the Mexican interest rate and the Ibovespa. It

is also interesting to note that the importance of global variables such as

VIX, gold and oil prices increases with decreasing frequency, as well as other

exchange rates. That is, with decreasing frequency, the relative importance

for determining the hyperparameters presented in the Section 3.2.
8For more details on how the importance of each variable is determined, see Section

10.13.1 of Friedman (2017)
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of variables becomes more homogeneous.

4.2. Real out-of-sample results

In the out-of-sample forecasting exercise, in which we seek to predict the

Brazilian nominal exchange rate in t+ 1 with information available only up

to t, in a first attempt we cannot repeat the same results of the out-of-sample

fit exercise (beat the random walk). Table 2 presents the results when using

only 1 lag of the predictors, including the lag of the Brazilian exchange rate.

For the exchange rates of 17 other currencies as predictors, we also apply

LASSO. In this case, at a frequency of 1 minute, we even found an MSE

ratio of less than 1, but without statistical significance.

However, when considering as a possible predictor the Brazilian Real-

U.S. dollar futures contracts (USDBRL futures) together with the lagged

value of the spot exchange rate itself, it is possible to beat Random Walk

at the significance level of 5% at the frequency of 1 minute, 1 step ahead.

By including local variables such as future interest rates and Ibovespa, it is

possible to marginally improve the MSE ratio at this frequency.

However, as we increase the model, including oil price, VIX, gold price

and exchange rates of 17 other currencies, the results worsen and statistical

significance is lost, indicating that these variables are introducing more noise

than signal in the real out-of-sample forecast. Machine Learning algorithms

are also not able to improve the result in relation to the Linear Regression

for the model with all variables for the frequency of 1 minute. However,

for the frequencies of 5 and 15 minutes, some ML methods are even able to
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Table 2: Brazilian real / dollar nominal spot exchange rate forecasting exercise, out-of-sample results (1 lag).

MSE ratio, h = 1 step ahead

Predictors Method freq. 1 min freq. 5 min freq. 15 min

USDBRL Linear Regression 0.9998 1.0007 1.0014

DI23, DI29 Linear Regression 0.9996 1.0013 1.0027

Ibovespa Linear Regression 0.9998 1.0006 1.0007

Oil price Linear Regression 0.9999 0.9995 1.0012

VIX Linear Regression 1.0000 1.0006 1.0019

Gold price Linear Regression 1.0005 1.0011 1.0014

17 currencies
Linear Regression 1.0007 1.0049 1.0051

LASSO 0.9995 1.0001 1.0004

USDBRL future Linear Regression 0.9992 1.0007 1.0014

USDBRL, DI23, DI29 Linear Regression 0.9996 1.0028 1.0051

USDBRL, Ibovespa Linear Regression 0.9997 1.0014 1.0014

USDBRL, USDBRL future Linear Regression 0.9969** 0.9997 1.0019

USDBRL, USDBRL future,
DI23, DI29

Linear Regression 0.9967** 1.0019 1.0055

USDBRL, USDBRL future,
Ibovespa

Linear Regression 0.9968** 1.0005 1.0019

USDBRL, USDBRL future,
DI23, DI29,
Ibovespa

Linear Regression 0.9967** 1.0026 1.0053

USDBRL, USDBRL future,
DI23, DI29,

Ibovespa, Oil price,
VIX, Gold price,
17 currencies

Linear Regression 0.9978 1.0076 1.0124
LASSO 0.9978 1.0044 1.0036
Ridge 0.9982 1.0006 1.0004

ElasticNet 0.9979* 1.0006 1.0002
SVR 0.9978 1.0023 0.9992
RF 1.0016 1.0055 1.0061
XGB 1.0000 1.0132 1.0146

MSE ratios in relation to Randow Walk without drift. ***, ** and * indicate rejection of the null
hypothesis (model and Random Walk predictions are not different), at the 1%, 5% and 10% levels
respectively. USDBRL is the nominal Brazilian real / dollar spot exchange rate. DI23 and D29 cor-
respond to Interbank Deposit interest rates futures contracts maturing in January 2023 and January
2029. The 17 currencies correspond to the nominal foreign exchange rates listed in the section 2.
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improve the MSE ratio in relation to the Linear Regression specification, but

without surpassing Random Walk in most cases or, for MSE ratio less than

1, without reaching statistical significance, as is the case with the SVR for

the specification with all variables at the frequency of 15 minutes.

As an additional exercise, we consider as predictors 5 lags 9 of the vari-

ables used so far, for the frequency of 1 minute, with the results shown in

the table 3. We note that the specifications that combine exchange rate lags,

future exchange rate, interest futures contracts and Ibovespa present an im-

provement in the MSE ratio in relation to the results of Table 2, with two of

them now presenting statistical significance at 1%. The other specifications

show worse results compared to those with only 1 lag.

We performed another exercise, to check in how many steps ahead it is

possible to beat Random Walk at a frequency of 1 minute for the successful

specifications so far, with 5 lags and Linear Regression as a method. Ad-

ditionally, we included a new specification that uses 5 lags for the spot and

future exchange rate and only 1 lag for the other local variables (interest

rates and Ibovespa). Table 4 presents the results. We conclude that within

2 minutes it is possible to beat Random Walk with statistical significance

for four specifications. For three minutes ahead, some specifications even

maintain an MSE ratio less than 1, but lose statistical significance.

9Ventura and Garcia (2012) estimate that the total effect of an order flow shock occurs
in the exchange rate within 5 minutes. We did not work with order flows in this paper,
but we used this result as a motivation to test 5 lags of our predictors in the exercise with
a frequency of 1 minute
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Table 3: Brazilian real / dollar nominal spot exchange rate forecasting exercise, out-of-
sample results (5 lags).

MSE ratio, h = 1

Predictors (5 lag of) Method freq. 1 min

USDBRL Linear Regression 1.0001

DI23, DI29 Linear Regression 1.0003

Ibovespa Linear Regression 1.0000

Oil price Linear Regression 1.0004

VIX Linear Regression 1.0001

Gold Linear Regression 1.0012

17 currencies Linear Regression 1.0052

USDBRL future Linear Regression 0.9995

USDBRL, DI23, DI29 Linear Regression 1.0007

USDBRL, Ibovespa Linear Regression 1.0005

USDBRL, USDBRL future Linear Regression 0.9948***

USDBRL, USDBRL future,
DI23, DI29

Linear Regression 0.9955**

USDBRL, USDBRL future,
Ibovespa

Linear Regression 0.9952***

USDBRL, USDBRL future,
DI23, DI29,
Ibovespa

Linear Regression 0.9959**

USDBRL, USDBRL future,
DI23, DI29,

Oil price, Ibovespa,
VIX, Gold,
17 currencies

Linear Regression 1.0024
LASSO 0.9996
Ridge 1.0017

ElasticNet 0.9996
SVR 1.0003
RF 1.0017
XGB 1.0000

MSE ratios in relation to Randow Walk without drift. ***, ** and * indicate
rejection of the null hypothesis (model and Random Walk predictions are
not different), at the 1%, 5% and 10% levels respectively. USDBRL is the
nominal Brazilian real / dollar spot exchange rate. DI23 and D29 correspond
to Interbank Deposit interest rates futures contracts maturing in January
2023 and January 2029. The 17 currencies correspond to the nominal foreign
exchange rates listed in the section 2.
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Figure 3: Out-of-sample fit XGB predictors importance, 15 minutes frequency.
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Table 4: Brazilian real / dollar nominal spot exchange rate forecasting exercise, out-of-sample results, 1 to 3
steps ahead.

MSE ratio, frequency = 1 min

Predictors (lags of) Method h = 1 h = 2 h = 3

USDBRL (5), USDBRL future (5) Linear Regression 0.9948*** 0.9973*** 0.9987

USDBRL (5), USDBRL future (5),
DI23 (5), DI29 (5)

Linear Regression 0.9955** 0.9983 0.9999

USDBRL (5), USDBRL future (5),
Ibovespa (5)

Linear Regression 0.9952*** 0.9979* 0.9993

USDBRL (5), USDBRL future (5),
DI23 (5), DI29 (5),

Ibovespa (5)
Linear Regression 0.9959** 0.9989 1.0005

USDBRL (5), USDBRL future (5),
DI23 (1), DI29 (1),

Ibovespa (1)
Linear Regression 0.9945*** 0.9973** 0.9987

MSE ratios in relation to Randow Walk without drift. ***, ** and * indicate rejection of the null
hypothesis (model and Random Walk predictions are not different), at the 1%, 5% and 10% levels
respectively. USDBRL is the nominal Brazilian real / dollar spot exchange rate. DI23 and D29
correspond to Interbank Deposit interest rates futures contracts maturing in January 2023 and
January 2029.
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4.3. Robustness Check

For the real out-of-sample case, as a robustness exercise, we performed

the prediction one step ahead for another five rolling window sizes for the

two specifications with the best result at the frequency of 1 minute, with the

results presented in table 5. We note that the MSE ratio remains at similar

levels and with the same statistical significance.

Table 5: Brazilian real / dollar nominal spot exchange rate forecasting exercise, out-of-sample results, different rolling
windows.

MSE ratio, freq. 1 min, h = 1

Predictors (lags of) Method
Rolling Window size:

18,75% 25% 31,25% 37,50% 43,75%

USDBRL (5),
USDBRL future (5)

Lin. Reg. 0.9956*** 0.9952*** 0.9950*** 0.9952*** 0.9946***

USDBRL (5),
USDBRL future (5),
DI23 (1), DI29 (1),

Ibovespa (1)

Lin. Reg. 0.9953*** 0.9949*** 0.9947*** 0.9951*** 0.9944***

MSE ratios in relation to Randow Walk without drift. ***, ** and * indicate rejection of the null hypothesis
(model and Random Walk predictions are not different), at the 1%, 5% and 10% levels respectively. USDBRL
is the nominal Brazilian real / dollar spot exchange rate. DI23 and D29 correspond to Interbank Deposit
interest rates futures contracts maturing in January 2023 and January 2029.

5. Conclusion

This article investigated the predictability of the Brazilian nominal ex-

change rate in out-of-sample fit and out-of-sample forecasting exercises using

as set of predictor variables: short and long-term Brazilian interest rates,

Brazilian stock market index, gold price, oil price, VIX and exchange rates

of 17 other countries. In the out-of-sample fit exercise it is possible to show

that, in case those variables were predictable, it would be possible to predict

the exchange rate in frequencies 1, 5 and 15 minutes. However the relation
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between the exchange rate and those economic variables is ephemeral: the

capability of prevision gets lost, for all frequencies, therefore we move from

out-of-sample fit exercise to the out-of-sample forecasting. This shows how

quickly the exchange rate really adjusts. Neither with 17 other exchange

rates as predictors it is possible to forecast the movement of the Brazilian

exchange rate 1 minute ahead better than Random Walk with statistical

significance.

It is only possible to recover the prediction power, for the frequency of

1 minute, if we consider as predictor the Brazilian Real-U.S. dollar futures.

This is probably due to Brazilian foreign exchange market characteristics.

The futures market is much more liquid than the spot market, and according

to Ventura and Garcia (2012), the exchange rate is firstly determined at the

exchange rate future market and then transmitted by arbitrage to the spot

market.

Machine Learning algorithms, in turn, improve the results in the out-of-

sample fit prediction exercise. For the augmented models in the out-of-sample

forecasting exercise, frequencies of 5 and 15 minutes, in general, also improve

the MSE ratio in relation to the linear specification, however not beating the

Random Walk.
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