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Abstract

We evaluate a program in Guatemala offering training and transfers of a local
chicken variety using a randomized phase-in design with imperfect compliance. We do
not find strong evidence for or against positive intent-to-treat effects on household-
level outcomes, including indicators of expenditure, calorie and protein intake, diet
quality, egg consumption and production, as well as chicken ownership and manage-
ment. Among girls between the ages of six and 60 months, we find that the program
reduced stunting by 23.5 (± 19.4) percentage points, while also improving other height
and weight outcomes. Boys are more likely to suffer from intestinal illness, which could
explain differences in program impacts by sex. Children in the poorest households ex-
perienced the largest impacts on dietary diversity and the probability of consuming
animal-source foods, but these impacts did not translate into larger effects on height
or weight.
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1 Introduction

Transferring chickens to poor households has attracted attention in the media (CNN, 2016)

and in development policy circles (Gates, 2016) as a promising antipoverty tool. The en-

thusiasm stems partly from the fact that a modest chicken flock can generate income while

requiring minimal investments of time, money, or land, making small-scale poultry farming

an appropriate enterprise for households with few resources (Sonaiya and Swan, 2004). In

addition, chicken transfers could improve human capital outcomes if they increase consump-

tion of animal-source foods among young children. Multi-country analysis from Headey,

Hirvonen, and Hoddinott (2018) reveals a strong correlation between animal-source food

consumption and child health, where the latter is measured by the incidence of stunting.

Poor child health can decrease earnings in adulthood, primarily through impaired cognitive

development (Attanasio et al., 2018; Attanasio, Meghir, and Nix, 2019; Figlio et al., 2014;

Hoddinott et al., 2008). Egg consumption may be particularly effective in improving child

health, as eggs have a better digestability-corrected amino acid profile than meat, fish, or

soy while also being rich in micronutrients and fatty acids that are essential for brain devel-

opment (Jin and Iannotti, 2014). The potential of eggs to improve child health is supported

by evidence from a randomized feeding trial in Ecuador, where giving infants one egg per

day for six months reduced stunting and underweight by 47% and 74%, respectively (Ian-

notti et al., 2017a). But caution is warranted, as increased poultry and livestock ownership

can undermine child health gains by increasing exposure to pathogens contained in animal

waste (Headey and Hirvonen, 2016; Headey et al., 2017). Furthermore, chicken transfer pro-

grams could be quickly undone by unexpected animal health shocks, as chickens are highly

susceptible to disease.

In this article, we add to the evidence on chicken transfers by evaluating a portion of the

Recovery of Natural Capital of the Dry Corridor Region program (hereafter “the program”)

in Guatemala. The program component studied here offered participating households a
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“chicken set” in exchange for completing a poultry extension program and meeting other

program requirements. The chicken set included ten females and two males of the local

“naked-neck” variety, a fifty pound bag of commercial chicken feed, forage plants for use

once the feed supply was exhausted, and animal health services.

Using baseline and follow-up data collected from 791 households, we estimate the effects

of the program by comparing 14 clusters of two or more communities randomly assigned to

be early recipients of the program (i.e. the treatment group) to 14 clusters of two or more

communities randomly assigned to be late recipients of the program (the control group).

We estimate intent-to-treat effects on two sets of outcomes: household-level indicators of

expenditure, diet quality, nutrient intake, egg production, chicken ownership, and poultry

management, and individual-level indicators of bodyweight, height, diet, exposure to animal

waste, and intestinal illness among boys and girls between the ages of six and 60 months.

Baseline data were collected about three months before the start of chicken set distribution in

the treatment group while follow-up data were collected shortly after the beginning of chicken

set distribution in the control group. Participation was not randomized or compulsory within

communities. At follow-up, 36% of households in the treatment group sample had received a

chicken set at least 80 days prior, which is the amount of time meeded for program chickens

to begin producing eggs, versus 9% of households in the control group sample.

We find no statistically significant results at the household level, but the 95% confi-

dence intervals around estimated intent-to-treat impacts are too wide to be characterized as

precise null effects. In addition, the slow pace of program implementation in communities as-

signed to the treatment group suggests that impacts on some indicators may have dissipated

before follow-up data were collected. We conclude that we do not have enough evidence

to state whether or not the program affected household-level indicators. In contrast, the

program had large positive impacts on anthropometric indicators for girls. Assignment to

the treatment group raised the average weight-for-age and height-for-age Z-scores by 0.349

standard deviations (± 0.281 standard deviations according to the 95% confidence interval)
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and 0.539 standard deviations (± 0.433), respectively. Stunting among girls fell by 23.5

percentage points (± 19.4), an improvement of 57% relative to the control group. Severe

stunting among girls fell by 14.3 percentage points (± 13.1), a decrease of 18% relative to

the control group. Impacts on girls are robust to multiple hypothesis testing adjustments,

mode of inference, regression specification, and sample construction. Average impacts on

anthropometric indicators for boys are positive but small and imprecisely estimated. We

speculate that the higher incidence of intestinal illness among boys could explain differences

in impacts on height and weight by sex. Relative to girls between the ages of six and 60

months, boys are 23% more likely to have had intestinal illness in the 30 days prior to follow-

up interviews and have had intestinal illness for almost a full extra day over the same time

horizon. Importantly, the program does not appear to have increased intestinal illness or

exposure to animal waste. Estimated average impacts on dietary indicators are small and

imprecise for girls and boys.

To explore impacts that average intent-to-treat effects may miss, we estimate heteroge-

neous intent-to-treat effects using an algorithm developed by Chernozhukov et al. (2018b).

The method of Chernozhukov et al. (2018b) uses machine learning methods to estimate

intent-to-treat effects on individual observations, allowing us to compare the households and

children who were most and least affected by the program both in terms of their respective

program impacts and their characteristics. We find no evidence of impact heterogeneity for

household-level outcomes. Among children, we find that children from the poorest house-

holds enjoyed the largest impacts on the probability of consuming animal-source foods in

the past day. We explore why the poorest children did not also enjoy the biggest positive

effects on height and weight and present descriptive evidence for differences in hygiene and

the incidence of intestinal illness by wealth as offering plausible explanations.

Our study adds to a growing literature on assessing livestock transfer programs. One

large strand of this literature studies the effects of “graduation” programs offering some

combination of entrepreneurial training, life skills coaching, regular home visits, a stipend,
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health services, and assets (usually livestock) to impoverished women. Examples include

Misha et al. (2019); Raza, de Poel, and Ourti (2018); Banerjee et al. (2015); Roy et al.

(2015); Emran, Robano, and Smith (2014); Bandiera et al. (2013); and Krishna, Poghosyan,

and Das (2012), among others. The vast majority of graduation evaluations focus on variants

of a single intervention—BRAC’s “Targeting the Ultra Poor” program in Bangladesh—and

tend to find large positive effects on income, assets, and food security. Among existing

randomized control trial evaluations of graduation programs, only Raza, de Poel, and Ourti

(2018) evaluate impacts on child height and weight, finding that Targeting the Ultra Poor

improves weight-for-height but not height-for-age. But given the bundle of interventions and

variety of asset types included in Targeting the Ultra Poor, it is difficult to say what portion

of its child health impacts can be attributed to livestock.

A smaller strand of the livestock transfer literature evaluates programs offering training

and livestock transfers with a “pass-on-the-gift” component, i.e. program participants must

agree to pass offspring from transferred livestock on to other households in order to receive

program benefits. Nearly all studies of pass-on-the-gift evaluate programs implemented by

Heifer International. The lone exception to this rule is Glass et al.’s (2017) evaluation of a

program that distributed pigs in Democratic Republic of Congo, where they find positive

effects on financial inclusion as well as self-reported mental and physical health. A series

of studies on Heifer International’s goat program in Nepal find positive effects on finan-

cial inclusion and women’s empowerment (Janzen et al., 2018) and suggestive evidence for

improved dietary diversity among children (Darrouzet-Nardi et al., 2016) as well as child

height and weight (Miller et al., 2016, 2014). A pair of evaluations of Heifer’s program offer-

ing dairy cows, draft cattle, and goats in Zambia find that all three livestock types increase

household expenditures while cows and goats increase dietary diversity (Jodlowski et al.,

2016; Kafle, Winter-Nelson, and Goldsmith, 2016). Using propensity score matching, Rawl-

ins et al. (2014) find positive effects of dairy cows on child height and weight in Rwanda but

no impacts of meat goats on these same outcomes.
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We make three main contributions to the literature. First, the context of the program

studied here differs substantially from that of existing livestock transfer evaluations, both

in terms of the implementing agency and location. Virtually all previous evaluations of

livestock transfers focus on programs administered by non-governmental organizations with

decades of implementation experience. We evaluate a program managed by a government

agency that had never previously attempted a large-scale livestock transfer program, and

the implementer’s lack of experience was severely tested by a disease outbreak at a program

breeding facility. In addition, the existing evidence on livestock transfers comes almost

exclusively from South Asia and Sub-Saharan Africa, with the exceptions of Honduras and

Peru in Banerjee et al. (2015). Guatemala has a substantially higher GDP per capita and

is more urbanized than Bangladesh, Nepal, Zambia, or Rwanda, for example (World Bank,

2019a,c). But Guatemala is characterized by extreme income inequality, with poverty heavily

concentrated in rural areas (Guatemala National Institute of Statistics, 2015). Among the

countries studied in the literature reviewed above, only Zambia and Honduras have larger

Gini coefficients (World Bank, 2019b).

Second, we use random variation in program implementation to identify impacts on child

height and weight in an environment where chronic malnutrition is rampant in rural areas. At

46.5%, Guatemala has one of the highest rates of stunting in the world among children under

five years of age (World Food Program, 2018). By comparison, stunting rates in Bangladesh,

Nepal, and Rwanda (the three countries for which we have evidence on livestock transfers and

child height) for children under five are 36%, 38%, and 36%, respectively (National Institute

of Statistics of Rwanda, 2015; National Institute of Population Research and Training, 2016;

Nepal Ministry of Health, 2016). Third, our approach to exploring heterogeneous program

effects allows for a richer analysis than what is typical in the livestock transfer literature. In

particular, our analysis demonstrates that children in the poorest households fail to translate

relatively large impacts on animal-source food consumption into bigger gains in height and

weight than their wealthier counterparts, suggesting that complementary interventions may
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be needed to improve program impacts for those who need them most.

In what follows, section 2 describes the context of the study and the details of the

program itself. Section 3 describes the evaluation design, data collection, and presents

summary statistics and balance tests. Section 4 describes our estimation and inference

methods, while section 5 reports the results. We discuss our results in section 6 and conclude

in section 7.

2 Background

The Recovery of Natural Capital of the Dry Corridor Region program was supported by the

Multilateral Investment Fund of the Inter-American Development Bank and implemented

by the Mancomunidad Copan Ch’orti’. The latter is an association formed by four munic-

ipalities in the Guatemalan department of Chiquimula to facilitate cooperation in regional

development projects. Chiquimula is located in the “Dry Corridor”, a region that stretches

from the southern tip of Mexico through Central America to Panama. Severe droughts af-

fected the Dry Corridor during the agricultural years ending in 2013, 2014, and 2015, capped

by a drought in 2015-2016 caused by an El Niño event characterized as the worst the region

had seen in 30 years (El Nuevo Diario, 2016; FAO, 2017). The population in Chiquimula

is largely indigenous, reliant on agriculture, and has a poverty rate of 71% (INE, 2015).

Chiquimula has some of the highest rates of malnutrition among children and overall food

insecurity in Guatemala (Government of Guatemala, 2013). In the 2014-2015 National Sur-

vey of Maternal and Child Health, 55.6% of children in Chiquimula below five years of age

were stunted and 19.2% were underweight according to standards set by the World Health

Organization (2011), while 40.2% of children in Chiquimula between the ages of six and 60

months were anemic (Ministry of Public Health and Social Assistance, 2017).

The main objective of the program studied here was to increase the resilience of house-

holds located in the Guatemalan Dry Corridor. A major feature of the program was the
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creation of farmer field schools in communities to train households in basic grain produc-

tion, agroforestry, adaptation to climate change, and poultry management. Each topic was

covered through weekly three-hour classes over the course of eight weeks. As mentioned in

the introduction, a second major program component was the distribution of naked-neck

chickens. By breeding and distributing naked-neck chickens, the Mancomunidad sought to

build resilience for program participants while conserving a productive asset well-suited to

the hot and drought-prone conditions of the Dry Corridor.

Evidence for the productivity of naked-neck chickens in adverse conditions is found in

the animal science literature. In a laboratory experiment, Chen et al. (2004) found that

normally-feathered chickens produce about 7% more eggs over a year (173 versus 161) than

naked-neck chickens when the ambient temperature is 22°C. But at 32°C the additional ven-

tilation provided by the naked-neck’s absence of neck feathers results in 9.7% additional

eggs produced (124 versus 113), higher average weight per egg (42.8 grams versus 40 grams),

and better maintenance of body weight (90% versus 85%). As discussed by Wong et al.

(2017), indigenous chicken varieties have co-evolved alongside their environments, and we

therefore also expect naked-neck chickens to have advantages over specialized egg layers with

respect to disease resistance, the ability to scavenge for food, and avoidance of predators.

Laboratory results like those of Chen et al. (2004) will not fully translate to conditions in

Chiquimula. But the Mancomunidad estimated that the ten hens given to each program par-

ticipant receiving chickens could produce around 500 eggs per year, suggesting a potentially

large impact on access to animal protein.

Program implementation worked as follows. Program personnel would arrive at a com-

munity and conduct a household census, followed by a meeting to publicize the program

and describe the farmer field schools and other program details. Communities too small to

support their own farmer field schools were combined into clusters with other neighboring

communities, and larger communities sometimes had multiple farmer field schools. House-

holds in the cohort studied in this article were allowed to pick which modules they attended
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and any resident of the community served by a farmer field school (according to the program’s

census) was eligible to enroll.

Each participating household received a chicken set if they satisfied the following criteria:

near-perfect attendance at the local farmer field school’s poultry sessions, constructing a hen

house using local materials, dedicating a small area to forage plants for their chickens, and

signing a pledge to transfer ten female and two male chickens back to the program once their

birds began to reproduce and their offspring were old enough to be moved (i.e. pass-on-the-

gift). The cost per household of the chicken set, including training and all materials, was

approximately $500 by 2018 and paid for by the program.1 To put this figure in context,

estimated average annual total consumption expenditure per capita was $1,113 in 2017 for

the households in our data set. While the program’s various components are directed at the

entire household, the individuals attending the poultry module and receiving chickens are all

women. As of January 2018, the poultry component of the program had produced 147,340

birds and distributed chickens to 4,239 households (Multilateral Investment Fund, 2018).

At each farmer field school, the chickens received by the first group of households

to complete the poultry module were raised by program technicians at a dedicated facility.

Subsequent graduates of the poultry module received chickens that had been raised by earlier

program participants from the same cluster and later passed back to the program to satisfy

the above-mentioned pledge. In the present study, fewer than 1% of households assigned to

the treatment group had received pass-on-the-gift birds when follow-up data were collected,

versus 37% of treatment group households overall. Waiting for further distribution of pass-

on-the-gift chickens would have led to contamination of the control group. In addition, only

6% of households in the treatment group had participated in a non-poultry farmer field

school module. The Mancomunidad made attendance of all modules compulsory for future

program cohorts, but this change did not affect the treatment group used in our study.

We therefore interpret our results as reflecting the impact of poultry training and chicken

1Cost figures are taken from program documentation provided by the Mancomunidad Copan Ch’orti’.

8



transfers delivered directly to beneficiary households through the program.

3 Evaluation design and data

All 133 communities located in the most drought-prone areas served by the Mancomunidad

were included in the program. Capacity constraints dictated that the program would be

rolled out over approximately five years. To that end, communities were divided into five

cohorts. The Mancomunidad’s initial plan was to phase the program into one cohort per

year, but implementation challenges described below resulted in slow rollout for some cohorts

and much quicker implementation in others.

3.1 Evaluation design

An initial cohort of 15 communities received the program in 2013-2014. Communities as-

signed to the first cohort were selected by the Mancomunidad and were prioritized because

of the severe effects of a drought. An additional 50 communities in relatively affluent coffee-

producing areas were assigned by the Mancomunidad to the program’s last cohort. The

remaining 68 communities were grouped into clusters large enough to support a farmer field

school and randomly assigned to cohort two, three, or four by the research team. Under

the evaluation plan agreed to with the Mancomunidad, program technicians would finish

distributing chickens raised by the program in one cohort before moving on to another. But

the evaluation plan did not set rules on the distribution of chickens between participating

households (i.e. through pass-on-the-gift) or on the order and pace of distribution within a

given cohort.

The randomization was carried out at the cluster level as follows. At the request of the

Mancomunidad, three clusters (totaling five communities) were randomly assigned to cohort

three to make the pace of program rollout as close to the Mancomunidad’s ideal as possible.
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The remaining 48 clusters (with 63 communities) were matched into strata of three clusters

each using Euclidean distance as a function of population size, number of communities,

altitude (indicators for low, medium, and high), and indicators for being located in one

of three watersheds. Community-level data were provided by the Mancomunidad. Each

member of a stratum was randomly assigned to program cohort two, three, or four. Cohort

four would serve as the control group for the evaluation, with follow-up data being collected

before cohort four could plausibly be affected by the program. Communities were not told

in advance when exactly they could expect the program to arrive, which should limit bias

from anticipatory effects.

There was a budget constraint on the evaluation that limited the number of surveys

to be collected, ruling out a midline survey and forcing the research team to decide how

to distribute the survey budget between cohorts two, three, and four. The research team

assumed that if data were collected before cohort four was affected by the program, then

cohort three would only be weakly affected at that point, particularly as compared to cohort

two. Therefore survey data were only collected from the 16 strata of clusters assigned to

cohorts two and four, including 16 clusters/19 communities assigned to cohort two (i.e. the

treatment group) and 16 clusters/22 communities assigned to cohort four (the control group).

Approximate locations of communities included in the data set are shown in figure 1.

3.2 Data collection and sample construction

The sample of interviewed households was constructed in three stages. First, since a census

was not available or feasible given budget constraints when baseline data were collected,

supervisors from the data collection team met with local leaders and created rosters of indi-

viduals living in each of the 41 communities assigned to program cohorts two and four. The

field team made it as clear as possible to community leaders that no benefit would be gained

from appearing on the list, and that the purpose of the list was to gather information that
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Figure 1: Program area
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would help the Mancomunidad serve the community. Next, a random sample of households

was selected from each cluster. Finally, households were retained in the sample if they could

be located and if they indicated participating in at least one productive agricultural activity

(raising animals or planting crops). Households not satisfying these critera were replaced

in the sample. The purpose of filtering households by participation in agriculture was to

identify households with a high probability of future participation in a farmer field school.

The baseline survey was carried out in May 2014, or about three months before the start of

chicken distribution in the treatment group. Follow-up data were collected in May 2017, or

about five months after the completion of chicken distribution in the treatment group and

one month into the distribution of chickens in the control group.
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Figure 2 shows the timing of baseline and endline data collection as well as the cu-

mulative number of chicken set deliveries made to treatment group households in our data

set. Chicken set distribution began in August 2014, accelerated in August 2015, and fin-

ished in January 2015. As mentioned in the introduction and noted in figure 2, the program

chicken-breeding facility suffered an outbreak of Marek’s disease, which is contagious and

deadly to chickens. We discuss the causes and consequences of the outbreak as well as other

program challenges in appendix A.1. A vaccine against Marek’s disease was introduced into

the program in August 2015. Although we do not have data on chicken deaths, the outbreak

could have affected the 47% of program participants in the treatment group who received

their chickens before the vaccine was introduced. When discussing our results later in the

paper, we consider the role of the disease outbreak in limiting program impacts.

The decision of when to collect follow-up data was complicated by lack of control on

the part of the research team over the timing of program implementation and the fact

that rollout accelerated once management issues (e.g. the Marek’s outbreak) were resolved.

The change in the pace of implementation made the program’s start in the control group

a moving target. But the follow-up survey seems to have been timed as appropriately as

possible given the circumstances. At follow-up, 38% of households in the treatment group

had received a chicken set versus 20% of households in the control group. Virtually all

participating households in the treatment group had been exposed to the program long

enough to experience impacts on most indicators, i.e. at least 80 days, which is how long it

would have taken for chickens received through the program to begin laying eggs. In contrast,

9% of households in the control group had received a chicken set at least 80 days before their

follow-up interviews. Waiting longer to collect follow-up data would have increased the

participation rate in treatment group communities (through pass-on-the-gift) but worsened

contamination of the control group. Collecting follow-up data early enough to cut into the

9% of control households with prolonged exposure to the program would have reduced the

number of treatment group households with sufficient program exposure. We discuss the
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Figure 2: Timing of data collection and chicken transfers
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details of follow-up data collection and the duration of exposure needed for the program to

have an effect on different indicators in appendix A.2.

Enumerators were able to complete follow-up interviews with 92.3% of the baseline

sample. We restrict our analysis to panel households and show that our results are robust

to attrition in appendix A.10. Prior to analysis, we dropped two contaminated strata where

the Mancomunidad intervened in the control clusters but not in the clusters assigned to

treatment (this appears to have been done purely by mistake). Assignment to the treatment

group was randomized within the remaining strata, so our identification strategy is unaffected

by dropping the contaminated observations.2 Our final sample includes 14 strata, 28 clusters,

2In appendix A.7 we compare baseline characteristics for our main estimating sample and the contami-
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and 791 households observed over two years, among which 14 clusters with 391 households

were assigned to treatment and 14 clusters with 400 households were assigned to control.

Power calculations for the experimental design are shown in section A.6 of the appendix.

3.3 Baseline summary statistics and balance

Table 1 shows averages and standard deviations by treatment status as well as estimated dif-

ferences in means for key demographic indicators and household-level outcomes, all estimated

using baseline data. Although baseline chicken ownership is fairly high, egg production is

quite low and heavily skewed, as the median level of egg production among chicken owners

is zero over the six months preceding baseline interviews. Egg consumption also looks some-

what high, but the average of roughly 1.35 egg consumed daily per adult male equivalent is

misleading, as the median is 0.65 and 31% of households reported consuming zero eggs.

In general, differences in means are small relative to the spread of the data, with calorie

consumption and naked-neck chickens showing statistically significant differences. It is un-

surprising that we would find at least some statistically significant differences given the large

number of hypothesis tests shown in table 1 and the fact that we did not directly stratify on

baseline outcomes in our randomization. We control for lagged outcomes when estimating

program impacts and show robustness to controlling for imbalanced baseline covariates in

appendix A.15.

Table 2 shows baseline summary statistics and balance for age and anthropometric in-

dicators among girls and boys, respectively, ages six to 60 months. We focus on this age

range for two reason. First, it is critical for child growth and development that children

complement breastfeeding with nutrient-dense solid foods (e.g. eggs and chicken meat) be-

tween six and 23 months of age (Choudhury, Headey, and Masters, 2019). Second, children

nated strata that were dropped, and in general they look very similar. In addition, we present results using
the full sample in appendix A.17. None of our conclusions is sensitive to whether we include all strata in
our analysis.
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Table 1: Baseline summary statistics and balance: household-level variables

Treatment Control Difference

Household size (adult male equivalents) 4.069 3.976 0.055
{1.799} {1.802} [0.136]

Dependency ratio 0.390 0.395 -0.003
{0.225} {0.223} [0.038]

Woman-headed household (0/1) 0.161 0.188 -0.029
{0.368} {0.391} [0.040]

Wealth (log) 9.619 9.412 0.220
{1.396} {1.353} [0.294]

Annual food expenditure per adult male equivalent (log) 7.250 7.432 -0.190
{1.269} {1.131} [0.193]

Daily calories per adult male equivalent (log) 8.340 8.463 -0.137
{0.730} {0.734} [0.058]**

Daily grams of animal protein per adult male equivalent 7.702 7.883 -0.445
{12.590} {11.304} [2.076]

Daily servings of eggs 0.393 0.440 -0.069
{0.570} {0.678} [0.094]

Eggs consumed per day per adult male equivalent 1.307 1.408 -0.137
{2.063} {2.354} [0.291]

Food consumption score 20.376 21.345 -1.110
{8.419} {8.239} [1.601]

Chickens owned 11.263 10.355 1.363
{11.867} {10.670} [1.212]

Naked-neck chickens owned 1.402 1.210 0.346
{3.305} {2.863} [0.143]**

Uses poultry registry (0/1) 0.107 0.095 0.012
{0.310} {0.294} [0.024]

Eggs produced in last six months (log) 1.421 1.527 -0.084
{2.299} {2.504} [0.219]

Sold at least one egg in last six months (0/1) 0.038 0.037 0.009
{0.192} {0.190} [0.019]

Observations 391 400 791

Notes: * p <0.10, ** p <0.05, *** p <0.01. Standard deviations in curly braces, standard errors
in brackets. All regressions for differences in means include the treatment indicator, an inter-
cept, and indicators for thirteen strata. Standard errors and degrees of freedom were estimated
as in Young (2016). Continuous outcomes were top coded their 1st and 99th percentiles. Wealth
includes the value of land, livestock, agricultural implements, housing, consumer durables, and
savings. Food quantity data were collected using a consumption module similar to that of the
Guatemalan National Survey of Living Standards, modified for the study context. Calorie and
protein data were obtained using a food composition table for Central America (INCAP, 2012).
The food consumption score is a quality-weighted measure of dietary diversity (World Food
Program, 2008).
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who were 23 months of age when baseline data were collected would be no more than sixty

months of age at follow-up. In other words, children sixty months of age and younger at

follow-up would have received their chickens sets during the most critical period for child

development. Our indicators include Z-scores for weight-for-age and height-for-age as well

as indicators for not being underweight, severely underweight, stunted, or severealy stunted,

all calculated according to guidelines from the World Health Organization (2011). Impacts

on Z-scores would indicate that the program shifted the distribution of height or weight,

while changes in indicators for stunting and underweight would imply that children with the

poorest health status were affected by the program.
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Table 2: Baseline summary statistics and balance: children ages six to 60 months

Treatment Control Difference

Girls

Age in months 32.604 31.655 1.298
{17.057} {16.194} [2.458]

Height-for-age (Z-score) -1.474 -1.724 0.233
{1.977} {1.739} [0.248]

Not stunted (0/1) 0.516 0.462 0.054
{0.502} {0.501} [0.091]

Not severely stunted (0/1) 0.802 0.790 0.007
{0.401} {0.409} [0.060]

Weight-for-age (Z-score) -0.940 -0.944 -0.035
{1.305} {1.391} [0.149]

Not underweight (0/1) 0.813 0.773 0.021
{0.392} {0.421} [0.054]

Not severely underweight (0/1) 0.956 0.941 0.024
{0.206} {0.236} [0.036]

Observations 91 119 210

Boys

Age in months 32.210 30.694 1.082
{15.016} {16.049} [1.806]

Height-for-age (Z-score) -1.766 -1.762 -0.055
{1.794} {1.891} [0.439]

Not stunted (0/1) 0.572 0.478 0.103
{0.497} {0.501} [0.094]

Not severely stunted (0/1) 0.826 0.776 0.045
{0.380} {0.418} [0.079]

Weight-for-age (Z-score) -0.911 -0.995 0.059
{1.513} {1.395} [0.306]

Not underweight (0/1) 0.790 0.791 -0.016
{0.409} {0.408} [0.045]

Not severely underweight (0/1) 0.949 0.948 0.006
{0.220} {0.223} [0.036]

Observations 138 134 272

Notes: * p <0.10, ** p <0.05, *** p <0.01. Standard deviations in curly braces, standard errors in
brackets. All regressions for differences in means include the treatment indicator, an intercept, and
indicators for thirteen strata. Z-scores as well as indicators for stunting and underweight calculated
according to World Health Organization standards (World Health Organization, 2011). Weight-for-
age and height-for-age were top and bottom coded at 6 and -6, respectively, following guidelines set
by the World Health Organization (2011). Standard errors and degrees of freedom estimated as in
Young (2016).
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4 Empirical approach

In our empirical analysis, we focus on identification and estimation of intent-to-treat effects,

i.e. the average effect of assignment to the treatment group rather than the control group. We

opt not to estimate effects of the treatment itself in the main text because with imperfect

treatment compliance the randomization only identifies program treatment effects in the

absence of spillovers (as well as other assumptions laid out in Imbens and Angrist (1994)).

For households in our data set, average distance to the nearest neighbor is 74 meters. Ruling

out any exchange of eggs (for example) wihin communities seems like an excessively strong

assumption in the present case.

4.1 Estimation and inference for average intent-to-treat effects

Household-level intent-to-treat effects are estimated using the following regression:

yhcst = γs + ρyhcst−1 + δTreatc + εhcst (1)

where h, c, s, and t index household, cluster, stratum, and time period, respectively. The

γs parameter is a stratum fixed effect, yhcst−1 is the lagged outcome, Treatc is a dummy

variable equal to one for households in clusters assigned to the treatment group, and δ is the

average intent-to-treat effect.3

We use a slightly different specification when estimating impacts on height and weight

indicators among children because lagged outcomes are only observed for individuals who

were already born at baseline. We compensate by using lagged outcomes among siblings,

when available:

yihcst = γs + γyi + γȳ + ρ1yihcst−1 + ρ2ȳhcst−1 + βAgeihcst + δTreatc + εihcst (2)

3We used lagged food expenditure for yicst−1 when estimating impacts on total expenditure because the
latter was only measured at follow-up.
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where i indexes child, yihcst−1 is the lagged outcome (set to zero for individuals not yet born

at baseline), ȳhcst−1 is the average lagged outcome among siblings of the same sex as child i

at baseline (e.g. the lagged average height-for-weight Z-score among girl siblings if child i is

a girl, set to zero if no such siblings exist), γyi is the coefficient on a dummy variable equal

to one if yihcst−1 is observed, γȳ is the coefficient on a dummy variable equal to one if ȳhcst−1

is observed in the data, and Ageihcst is age in months as measured at follow-up.

Since individual-level diet indicators were not collected at baseline, we remove γyi , γȳ,

yihcst−1, and ȳhcst−1 from the model when estimating impacts on dietary diversity and con-

sumption of animal-source foods among children and replace them with the lagged outcome

measured at the household level using seven-day recall. For inference, we estimate cluster-

robust standard errors and effective degrees of freedom as in Young (2016), which should

result in valid inference despite having just 28 clusters in the data. We adjust for multiple

comparisons by reporting q-values and 95% confidence intervals adjusted for the false dis-

covery rate (Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2005). We describe

our rules for multiple hypothesis testing in detail in appendix A.5.

4.2 Estimation and inference for heterogeneous intent-to-treat ef-

fects

We use a method proposed by Chernozhukov et al. (2018b) to explore program impact het-

erogeneity. The method of Chernozhukov et al. (2018b) allows us to model heterogeneous

treatment effects as a function of a large number of observed characteristics while avoiding

“overfitting”, i.e. without obtaining an excellent in-sample fit at the expense of highly-

variable out-of-sample performance. Overfitting could lead to “discovering” treatment effect

heterogeneity that is a quirk of a given sample rather than reflective of the population of in-

terest. In addition, when applying the method of Chernozhukov et al. (2018b) we can predict

heterogeneous treatment effects using machine learning methods without placing any distri-
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butional assumptions on the estimates generated by a given algorithm. In general, the theory

needed to justify hypothesis testing using machine learning estimates is not well developed,

although there are exceptions (Athey, Tibshirani, and Wager, 2019; Belloni, Chernozhukov,

and Hansen, 2014). In contrast, hypothesis testing is carried out just as in any application

of linear regression when applying the method of Chernozhukov et al. (2018b). We present

key details of our approach to estimating impact heterogeneity below and reserve a detailed

discussion for appendix A.3.

To apply the method of Chernozhukov et al. (2018b), we begin by estimating the fol-

lowing equation:

yics = α′Xics + β1(Treatc − p(Zics)) + β2(Treatc − p(Zics))(S(Zics)− S̄) + εics (3)

The vector Zics includes covariates that could explain impact heterogeneity and are observed

at baseline or otherwise unaffected by assignment to treatment. In appendix A.4 we describe

and justify each variable included in Zics. The propensity score is given by p(Zics) and is

set to 0.5 for all observations by virtue of randomization,4 S(Zics) is a “proxy predictor”

for the conditional intent-to-treat effect obtained through machine learning methods, and

S̄ is the mean of the proxy predictor. The average intent-to-treat effect is given by β1,

while β1 + β2(S(Zics)− S̄) is a linear approximation to the intent-to-treat effect conditional

on Zics. The properties of ordinary least squares ensure that β1 + β2(S(Zics) − S̄) is the

“best linear predictor” of the conditional intent-to-treat effect given S(Zics), i.e. the linear

predictor that yields the smallest mean squared error (Chernozhukov et al., 2018b). The

vector Xics contains a column of ones and additional terms meant to improve precision,

including stratum indicators, S(Zics), and a proxy predictor for the conditional mean of yics

when assigned to the control group.

4In our application, subtracting the propensity score from the treatment indicator has no effect on our
results since the propensity score does not vary. However, for research designs where the probability of
treatment depends on observed characteristics, failing to difference out the propensity score can result in
substantial bias (Chernozhukov et al., 2018a).
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We also estimate equation 4:

yics = α′Xics + γ1G1(Treatc − p(Zics)) + γ2G2(Treatc − p(Zics))

+ γ3G3(Treatc − p(Zics)) + uics

(4)

where G1 is an indicator variable equal to one for observations in the lowest tercile of S(Zics),

and G2 and G3 are indicators for the middle and top terciles of S(Zics), respectively. If

S(Zics) closely approximates the true conditional intent-to-treat effect, then γ1, γ2, and γ3

will closely correspond to the average intent-to-treat effects among households or children

least affected, moderately affected, and most affected by the program. We refer to γ1, γ2,

and γ3 as group average intent-to-treat effects.

Finally, we have:

Zk
ics = δ1G1 + δ2G2 + δ3G3 + eics (5)

where Zk
ics represents a single covariate fromZics. The parameters δ1, δ2, and δ3 are the means

of Zk
ics for the least, middle, and most affected observations. By testing whether δ1 = δ3

we can check whether the most and least affected observations differ in their characteristics.

We refer to the comparison of δ1 and δ3 as classification analysis, following Chernozhukov

et al. (2018b). We limit the classification analysis presented in the main text to outcomes

that exhibit evidence of treatment effect heterogeneity, i.e. where we can reject β2 = 0 or

γ1 = γ3 after adjusting for multiple hypothesis testing. Other classification analysis results

are given in appendices A.13 for children and A.14 for household-level outcomes.

The method of Chernozhukov et al. (2018b) avoids overfitting by using repeated sample

splitting, i.e. randomly dividing the sample into an auxiliary part used for model selection

and a main part used for estimation and hypothesis testing. We repeat the sample splitting

procedure 199 times and report the median of each point estimate, p-value, and upper and

lower confidence interval bound in our final results. Using medians generated by many

sample splits increases robustness, e.g. by avoiding “cherry picking” a favorable sample
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split. The cost of sample splitting is that a nominal significance level of α translates to a

true significance level of 2α (Chernozhukov et al., 2018b).

We use two machine learning methods to create the proxy predictors (i.e. the S(Zics)):

the elastic net (Zou and Hastie, 2005) and the random forest algorithm (Breiman, 2001). The

elastic net is a penalized least squares method that arguably combines the best features of two

other well-known penalized least squares methods: the LASSO and ridge regression. When

predictors are not highly correlated with one another and the correct regression model has a

relatively small number of non-zero parameters, then the elastic net will select a small number

of predictors, just as in the LASSO. When a subset of predictors are highly correlated with

one another, the elastic net will include them all in the final model, just as in ridge regression

(Zou and Hastie, 2005). The random forest algorithm is an “ensemble” method that averages

predictions generated by many “regression trees”. Regression trees are grown by splitting

the sample into “leaves” where observations in a leaf have similar values of covariates that

are important for predicting the outcome. Each observation is assigned the average of the

outcome within its leaf as its predicted value. The elastic net should provide a better fit for

outcomes where the conditional mean is linear in parameters whereas random forest may

have more success for nonlinear problems. Both methods strong predictive accuracy while

avoiding overfitting.

Since we are using two machine learning methods, we could potentially have two tests

for every hypothesis of interest that should be accounted for when adjusting for multiple

comparisons. We opt to present results from only one machine learning method per outcome.

When deciding which set of results to select for a given outcome, we first check whether one

of the machine learning methods strictly dominates based on two separate goodness-of-fit

measures taken from Chernozhukov et al. (2018b) and described in appendix A.3. If the two

goodness-of-fit measures disagree, then we select the set of results to report at random.

Note that we do not conduct separate heterogeneity analyses for boys and girls. Dividing
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the subsample of children by sex would in our view cut the data too finely, limiting our ability

to detect meaningful effect heterogeneity. Instead, we include sex as one of the characteristics

that could shape treatment effect heterogeneity. Results obtained when splitting the sample

of children by sex are similar but less precise than what we obtain by pooling the sample of

children.

5 Results

5.1 Average intent-to-treat effects on households

Table 3 presents average intent-to-treat effects for household-level outcomes. Virtually all

intent-to-treat estimates are small and imprecisely estimated. Although the negative point

estimates on number of chickens owned and naked-neck chickens owned are somewhat alarm-

ing, they are not significant and contradicted by a positive effect on egg production that is

estimated with comparable precision. Overall, impacts at the household level are not es-

timated with enough precision to make a strong statement about program effects on the

outcomes shown in table 3.

5.2 Average intent-to-treat effects on children

Table 4 shows estimated intent-to-treat effects among children ages six to 60 months. Among

girls, impacts on weight-for-age, height-for-age, stunting, and severe stunting are large, sig-

nificant, and robust to adjustment for multiple comparisons. Estimated effects for boys are

generally small and none are statistically significant. Impacts on consumption of animal-

source foods and the dietary diversity score are imprecisely estimated for both sexes. As

shown in the rightmost column of table 4, there are significant differences in intent-to-treat

effects by sex for weight-for-age and stunting, although none of the differences in intent-to-

treat effects by sex remain statistically significant after adjusting for multiple comparisons.
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Table 3: Intent-to-treat effects, household-level outcomes

Intent-to-treat effect Control mean

Annual expenditure per adult male equivalent (log) -0.008 9.087
[-0.434, 0.418]

(-0.511, 0.494)

Annual food expenditure per adult male equivalent (log) 0.004 8.364
[-0.290, 0.298]

(-0.290, 0.298)

Daily calories per adult male equivalent (log) -0.001 8.075
[-0.250, 0.248]

(-0.250, 0.248)

Daily grams of animal protein per adult male equivalent 2.420 26.793
[-14.317, 19.157]

(-18.309, 23.148)

Daily servings of eggs -0.024 0.439
[-0.243, 0.195]

(-0.272, 0.224)

Eggs consumed per day per adult male equivalent -0.007 1.867
[-1.009, 0.996]

(-1.068, 1.054)

Food consumption score -0.897 7.214
[-2.839, 1.045]

(-3.652, 1.858)

Chickens owned -1.289 8.377
[-3.318, 0.740]

(-3.802, 1.224)

Naked-neck chickens owned -0.354 2.425
[-1.882, 1.175]

(-1.971, 1.264)

Uses poultry registry (0/1) 0.026 0.015
[-0.008, 0.060]

(-0.022, 0.075)

Eggs produced in last six months (log) 0.203 2.600
[-0.503, 0.910]

(-0.598, 1.005)

Sold at least one egg in last six months (0/1) 0.004 0.075
[-0.050, 0.059]

(-0.050, 0.059)

Observations 791

Notes: * p <0.10, ** p <0.05, *** p <0.01; + q <0.10, ++ q <0.05, +++ q <0.01, where q is
the false discovery rate. 95% confidence intervals in brackets, 95% false discovery rate-adjusted
confidence intervals in parentheses. Standard errors and degrees of freedom estimated as in
Young (2016). See equation 1 for the regression specification.
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Table 4: Intent-to-treat effects for children, ages 6 to 60 months

Girls Boys

Intent-to-treat effect Control mean Intent-to-treat effect Control mean Difference

Weight-for-age (Z-score) 0.349 -1.305 0.027 -1.163 0.322
[0.111, 0.587]*** [-0.397, 0.450] [-0.050, 0.694]*

(0.068, 0.629)++ (-0.397, 0.450) (-0.154, 0.798)

Not underweight (0/1) 0.090 0.773 0.023 0.802 0.068
[-0.021, 0.202] [-0.098, 0.143] [-0.113, 0.249]

(-0.027, 0.207) (-0.120, 0.165) (-0.122, 0.257)

Not severely underweight (0/1) 0.054 0.938 0.032 0.954 0.021
[-0.013, 0.120] [-0.022, 0.087] [-0.081, 0.124]

(-0.013, 0.120) (-0.048, 0.112) (-0.081, 0.124)

Height-for-age (Z-score) 0.539 -2.209 0.065 -1.997 0.474
[0.203, 0.875]*** [-0.631, 0.762] [-0.178, 1.125]

(0.106, 0.972)++ (-0.706, 0.836) (-0.295, 1.242)

Not stunted (0/1) 0.235 0.412 0.038 0.420 0.197
[0.103, 0.366]*** [-0.121, 0.196] [-0.029, 0.423]*

(0.041, 0.428)++ (-0.166, 0.242) (-0.132, 0.526)

Not severely stunted (0/1) 0.143 0.784 0.012 0.794 0.131
[0.025, 0.261]** [-0.115, 0.139] [-0.064, 0.326]

(0.012, 0.274)++ (-0.121, 0.145) (-0.085, 0.347)

Consumed animal-source foods in past day (0/1) -0.039 0.598 0.061 0.547 -0.100
[-0.339, 0.260] [-0.210, 0.331] [-0.294, 0.094]

(-0.394, 0.315) (-0.259, 0.380) (-0.329, 0.129)

One-day dietary diversity score -0.014 5.649 -0.041 5.484 0.027
[-1.049, 1.021] [-1.272, 1.190] [-0.626, 0.680]

(-1.049, 1.021) (-1.272, 1.190) (-0.626, 0.680)

Observations 195 241 436

Notes: * p <0.10, ** p <0.05, *** p <0.01; + q <0.10, ++ q <0.05, +++ q <0.01, where q is the false discovery rate. 95% confidence
intervals in brackets, 95% false discovery rate-adjusted confidence intervals in parentheses. Standard errors and degrees of freedom es-
timated as in Young (2016). Z-scores and indicators for stunting and underweight based on standards from World Health Organization
(2011). See equation 2 for the regression specification.
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5.3 Robustness checks on average intent-to-treat effects

We subject our results to a large number of robustness checks, including testing hypotheses

by randomization inference (appendix A.8), adding imbalanced baseline outcomes to the

covariate set (A.15), and checking for bias from spillovers across clusters (A.9) and attri-

tion (A.10). We also run a series of robustness checks specifically for impacts on children,

including dropping age and lagged outcomes from the covariate set when estimating aver-

age intent-to-treat effects (A.11), including children below six months of age in the sample

(A.19), limiting the sample to children alive at baseline (A.21), estimating average intent-to-

treat efects using machine learning methods (A.12), and limiting the sample to households

that had children at baseline (A.20). None of our robustness checks negates our conclusions.

5.4 Heterogeneous intent-to-treat effects

Our analysis of heterogeneous intent-to-treat effects uncovered no statistically significant

heterogeneity at the household level, and we present household-level results in appendix A.14.

Table 5 reports the results of estimating equation 3 for our child-level outcomes. The effect

on stunting remains statistically significant when pooling boys and girls, although its q-value

is above standard cutoff values. The “Heterogeneity” parameter (i.e. β2 from equation 3) is

statistically significant for the one-day dietary diversity score and the indicator for having

consumed animal-source foods in the past day.5 For the remaining outcomes, estimates in

the “Heterogeneity” column are quite noisy. Table 6 presents the estimated group average

intent-to-treat effects for child-level outcomes. The differences in intent-to-treat effects for

the most and least affected children are estimated somewhat noisily, which is to be expected

given that each parameter is estimated using one-third of the available data. Given that the

5The 90% confidence interval for the dietary diversity score heterogeneity parameter excludes zero despite
the fact that the q-value is greater than 0.10 (the q-value is 0.1018). This is possible because the reported
p-values (upon which the q-values are based) and the reported confidence intervals are medians generated
by sample splitting. The median p-value might come from a different sample split than the median upper
or lower bound of the corresponding confidence interval.
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relevant “Heterogeneity” parameters are significant after adjusting for multiple comparisons,

we conclude that there is evidence of impact heterogeneity for both diet outcomes.

Table 5: Best linear predictor of the average intent-to-treat effect and impact heterogeneity:
child outcomes

Intent-to-treat Heterogeneity ML method

Weight-for-age (Z-score) 0.157 0.570 Elastic net
[-0.063, 0.390] [-0.501, 1.649]

(-0.090, 0.432) (-0.830, 1.981)

Not underweight (0/1) 0.022 0.075 Elastic net
[-0.053, 0.097] [-2.008, 2.357]

(-0.053, 0.097) (-2.322, 2.562)

Height-for-age (Z-score) 0.236 0.362 Elastic net
[-0.085, 0.551] [-0.914, 1.610]

(-0.160, 0.645) (-0.914, 1.610)

Not stunted (0/1) 0.117 -0.598 Random forest
[0.021, 0.209]** [-1.563, 0.426]

(-0.008, 0.243) (-2.144, 0.805)

Consumed animal-source foods in past day (0/1) 0.055 1.134 Random forest
[-0.048, 0.155] [0.295, 1.979]**

(-0.060, 0.165) (0.116, 2.262)

One-day dietary diversity score 0.125 0.911 Random forest
[-0.254, 0.510] [0.188, 1.630]**

(-0.268, 0.524) (0.035, 1.717)+

Notes: * p <0.10, ** p <0.05, *** p <0.01; + q <0.10, ++ q <0.05, +++ q <0.01, where q is the false
discovery rate. 90% confidence intervals in brackets, 90% false discovery rate-adjusted confidence
intervals in parentheses. Standard errors and degrees of freedom estimated as in Young (2016). See
equation 3 for the regression specification.

Tables 7, 8, and 9 each shows estimated differences in means obtained for ten separate

characteristics when comparing the children most and least affected by the program. Chil-

dren enjoying the largest impacts on having consumed animal-source foods in the past day are

from households that are relatively poor and unlikely to be connected to an electricity grid.

Other baseline characteristics showing significant differences include the dependency ratio,

having a dirt floor, giving government-provided micronutrient supplements to their children,

and having a loan. But these additional differences are sensitive to adjusting for multiple

comparisons. For the one-day dietary diversity score, children experiencing the largest im-

27



Table 6: Intent-to-treat effects for most and least affected children

Most Least (Most - Least)

Weight-for-age (Z-score) 0.371 -0.024 0.382
[-0.095, 0.810] [-0.533, 0.496] [-0.370, 1.143]

(-0.172, 0.870) (-0.533, 0.496) (-0.459, 1.248)

Not underweight (0/1) 0.053 0.005 0.033
[-0.135, 0.246] [-0.188, 0.192] [-0.254, 0.356]

(-0.142, 0.255) (-0.199, 0.203) (-0.273, 0.371)

Height-for-age (Z-score) 0.347 0.272 0.052
[-0.338, 1.060] [-0.382, 0.876] [-0.955, 1.107]

(-0.386, 1.128) (-0.482, 0.930) (-0.998, 1.146)

Not stunted (0/1) 0.002 0.199 -0.194
[-0.225, 0.225] [-0.022, 0.429] [-0.548, 0.175]

(-0.225, 0.225) (-0.110, 0.516) (-0.623, 0.255)

Consumed animal-source foods in past day (0/1) 0.281 -0.124 0.404
[0.052, 0.509]** [-0.373, 0.130] [0.005, 0.798]*

(-0.022, 0.640) (-0.414, 0.177) (-0.022, 0.821)

One-day dietary diversity score 0.824 -0.421 1.244
[0.003, 1.635]* [-1.321, 0.402] [-0.029, 2.595]

(-0.173, 1.902) (-1.606, 0.611) (-0.029, 2.595)

Notes: * p <0.10, ** p <0.05, *** p <0.01; + q <0.10, ++ q <0.05, +++ q <0.01, where q is
the false discovery rate. 90% confidence intervals in brackets, 90% false discovery rate-adjusted
confidence intervals in parentheses. Standard errors and degrees of freedom estimated as in Young
(2016). See equation 4 for the regression specification.

pacts are from households that have relatively low average household height-for-age, are more

likely to use micronutrient supplements, and own larger chicken flocks at baseline. But all of

the differences in characteristics between the children most and least affected with respect

to dietary diversity lose statistical significance when adjusting for multiple comparisons.
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Table 7: Classification analysis for child outcomes

(Most - Least)

Sample Animal-source Dietary diversity
average foods (0/1) (count)

Woman (0/1) 0.445 -0.014 -0.000
[-0.180, 0.147] [-0.166, 0.163]

(-0.188, 0.155) (-0.172, 0.169)

Age in months 31.743 1.208 2.528
[-3.946, 6.519] [-2.656, 7.712]

(-4.023, 6.601) (-3.561, 8.616)

Household average weight-for-age -0.616 -0.155 -0.182
[-0.590, 0.281] [-0.628, 0.260]

(-0.667, 0.349) (-0.691, 0.326)

Household average height-for-age -1.056 -0.427 -0.747
[-1.010, 0.161] [-1.318, -0.160]**

(-1.173, 0.317) (-1.658, 0.170)

Baseline weight-for-age -0.155 -0.059 -0.032
[-0.408, 0.289] [-0.371, 0.310]

(-0.434, 0.318) (-0.405, 0.343)

Baseline height-for-age -0.285 -0.059 -0.355
[-0.540, 0.401] [-0.811, 0.109]

(-0.550, 0.412) (-0.939, 0.237)

Meters above sea level 765.182 47.808 12.225
[-52.605, 146.907] [-85.503, 111.672]

(-72.885, 167.034) (-86.245, 112.418)

Rainfall (millimeters) 467.225 30.933 87.053
[-78.066, 139.856] [-20.176, 195.244]

(-78.066, 139.856) (-48.889, 224.365)

Days with extreme temperatures 173.961 -5.653 -7.194
[-26.275, 14.736] [-26.922, 13.317]

(-28.147, 16.807) (-28.941, 15.377)

Household size 4.102 -0.229 -0.293
[-0.787, 0.351] [-0.862, 0.292]

(-0.892, 0.441) (-0.967, 0.404)

Notes: * p <0.10, ** p <0.05, *** p <0.01; + q <0.10, ++ q <0.05, +++ q <0.01, where q is
the false discovery rate. 90% confidence intervals in brackets, 90% false discovery rate-adjusted
confidence intervals in parentheses. Standard errors are of the heteroskedasticity-robust “HC1”
variety (MacKinnon and White, 1985). All characteristics displayed in the rows are measured
at baseline except for sex, age, weather variables, and altitude of the dwelling. Weather vari-
ables are measured for the 2015 crop season, approximately one year after baseline interviews.
“Days with extreme temperatures” are days with maximum temperature over 30°C. “Baseline
weight-for-age” and “Baseline height-for-age” are lagged Z-scores set to zero in the case of miss-
ing values, while “Household average weight-for-age” and “Household average height-for-age”
are the lagged average Z-scores among siblings of the same sex as a given observation. House-
hold size is in adult male equivalents.
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Table 8: Classification analysis for child outcomes, continued

(Most - Least)

Sample Animal-source Dietary diversity
average foods (0/1) (count)

Dependency ratio 0.488 0.070 0.014
[0.012, 0.129]** [-0.048, 0.073]

(-0.009, 0.150) (-0.050, 0.074)

Average education (years) 2.639 -0.569 0.403
[-1.639, 0.514] [-0.658, 1.452]

(-1.857, 0.722) (-0.796, 1.574)

Wealth (log) 9.185 -0.809 -0.366
[-1.204, -0.415]*** [-0.786, 0.051]

(-1.477, -0.172)+++ (-0.915, 0.169)

Dwelling has dirt floor (0/1) 0.748 0.153 0.042
[0.016, 0.290]* [-0.103, 0.186]

(-0.028, 0.334) (-0.103, 0.186)

Micronutrient supplement (0/1) 0.511 0.222 0.181
[0.061, 0.383]** [0.018, 0.344]*

(-0.011, 0.454) (-0.065, 0.427)

Receives CCT (0/1) 0.409 -0.014 -0.139
[-0.176, 0.151] [-0.303, 0.019]

(-0.200, 0.175) (-0.361, 0.075)

Women’s share of wealth 0.306 0.020 0.010
[-0.081, 0.121] [-0.091, 0.112]

(-0.084, 0.125) (-0.098, 0.119)

Had credit at baseline (0/1) 0.116 -0.139 -0.097
[-0.241, -0.032]** [-0.202, 0.014]

(-0.281, 0.011) (-0.240, 0.050)

Distance to market (minutes) 64.264 1.847 -3.361
[-14.908, 18.441] [-20.110, 12.890]

(-16.185, 19.712) (-20.377, 13.137)

Dwelling has water filter (0/1) 0.132 0.014 0.042
[-0.098, 0.121] [-0.075, 0.143]

(-0.111, 0.135) (-0.088, 0.154)

Notes: * p <0.10, ** p <0.05, *** p <0.01; + q <0.10, ++ q <0.05, +++ q <0.01, where q is
the false discovery rate. 90% confidence intervals in brackets, 90% false discovery rate-adjusted
confidence intervals in parentheses. Standard errors are of the heteroskedasticity-robust “HC1”
variety (MacKinnon and White, 1985). All characteristics displayed in the rows are measured
at baseline.
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Table 9: Classification analysis for child outcomes, continued

(Most - Least)

Sample Animal-source Dietary diversity
average foods (0/1) (count)

Connected to water network (0/1) 0.577 0.042 0.153
[-0.121, 0.205] [-0.005, 0.315]

(-0.128, 0.212) (-0.067, 0.379)

Connected to electricity network (0/1) 0.461 -0.250 -0.069
[-0.410, -0.090]*** [-0.234, 0.096]

(-0.491, -0.008)+ (-0.256, 0.118)

Social capital index, household 1.466 0.097 0.167
[-0.495, 0.723] [-0.490, 0.782]

(-0.500, 0.727) (-0.540, 0.827)

Social capital, women 0.807 0.125 0.097
[-0.267, 0.495] [-0.298, 0.490]

(-0.314, 0.543) (-0.312, 0.502)

Calories (log) 8.341 -0.046 0.162
[-0.303, 0.201] [-0.094, 0.421]

(-0.317, 0.215) (-0.150, 0.479)

Animal protein (log grams) 5.576 -1.748 0.603
[-4.414, 0.986] [-2.133, 3.532]

(-5.015, 1.690) (-2.288, 3.689)

Food consumption score 19.389 -1.785 0.403
[-4.272, 0.706] [-2.110, 2.726]

(-4.891, 1.301) (-2.232, 2.854)

Egg unit value (quetzales/egg) 1.186 -0.034 -0.020
[-0.070, 0.003] [-0.057, 0.015]

(-0.078, 0.012) (-0.064, 0.023)

Eggs produced (units in last six
months)

41.922 -13.299 19.404

[-55.510, 27.832] [-22.479, 57.994]

(-60.992, 31.701) (-29.760, 67.178)

Chickens owned 10.107 0.069 3.708
[-3.445, 3.614] [0.127, 7.150]*

(-3.780, 3.868) (-1.464, 8.833)

Notes: * p <0.10, ** p <0.05, *** p <0.01; + q <0.10, ++ q <0.05, +++ q <0.01, where q is
the false discovery rate. 90% confidence intervals in brackets, 90% false discovery rate-adjusted
confidence intervals in parentheses. Standard errors are of the heteroskedasticity-robust “HC1”
variety (MacKinnon and White, 1985). All characteristics displayed in the rows are measured
at baseline. “Social capital” and “Social capital, women” are counts of memberships in or-
ganizations and groups of which the household and women in the household, respectively, are
members. “Egg unit value” is the price paid per purchased egg.
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6 Discussion

6.1 Are our household-level results consistent with a well-functioning

program?

Our household-level analysis did not uncover clear evidence of program impacts. But there

are several mitigating factors that could explain this result. First, the Marek’s outbreak

likely made impacts on chicken ownership short lived for some households. Second, the power

analysis in appendix section A.6 shows that minimum detectable effects for most household-

level outcomes are somewhat large, and low power is reflected by the wide 95% confidence

intervals around estimated household-level impacts. Third, the program was rolled out over

the course of a year and a half in the treatment group, and follow-up data were collected

about two and a half years after the start of implementation. Naked-neck chickens have

a productive life of two to three years, while program chickens produced offspring for 56%

of surveyed households who received birds that were vaccinated against Marek’s and 13%

of households receiving chickens who did not get the vaccination (we do not know whether

offspring produced eggs). We would not expect the household-level indicators used in our

analysis to be permanently affected by a temporary increase in egg production and chicken

ownership. In other words, program impacts on household-level indicators may have come

and gone for some households by the time follow-up data were collected. The potentially

transitory nature of household-level program effects stands in contrast to impacts on stunting

(and to a lesser degree underweight), which can be permanently improved through proper

nutrition in early childhood (Choudhury, Headey, and Masters, 2019).

6.2 Explaining larger average impacts on girls than boys

Our results from section 5.2 show a clear pattern of larger impacts on girls. A first possi-

ble explanation for this pattern is survivor effects, e.g. the program is allowing boys with
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relatively low Z-scores to survive until the follow-up survey. But only two children who

were young enough at baseline to later be included in our impact analysis did not survive

to the follow-up survey, and the program had no impact on the number of boys or girls

under 60 months of age at the household level (see appendix A.21). A second explanation is

that our results reflect sex-specific differences in anthropometric indicators in the absence of

treatment, or in the treatment group prior to intervention. We examine this possibility by

comparing Z-scores for boys and girls in the control group at follow-up and in the treatment

group at baseline. Kolmogorov-Smirnov tests and t-tests fail to reject the null of no differ-

ence by sex in all cases, regardless of whether we condition on being stunted (when testing

height-for-age) or underweight (when testing weight-for-age).

Alternatively, it could be that boys are more likely than girls to suffer from intestinal

illness, undermining gains in height and weight through poor absorption of nutrients (Guer-

rant et al., 2012). As mentioned earlier, the program itself could increase intestinal illness

by worsening exposure to pathogens in animal waste. We explore whether the program af-

fected intestinal illness among children as well as differences in intestinal illness by sex in

table 10. The first and second columns of table 10 show no evidence that the program had

deleterious effects on child intestinal health. But in the three rightmost columns we see that

the incidence and average duration of intestinal illness are substantially higher among boys,

where the latter is calculated using all children, not just those who were sick.6

If we could identify the mechanism that is driving higher rates of intestinal illness

among boys, then we might be able to propose a complementary intervention that could

raise the effectiveness of future livestock transfer programs. One possible explanation for

what we observe in table 10 is greater exposure to pathogens among infant boys through

consumption of drinks mixed with unclean water, e.g. infant formula (Anttila-Hughes et al.,

6Note that the q-values and confidence intervals shown in table 10 do not incorporate the hypothesis
tests for our main outcomes of interest shown in table 4. We consider the tests in each table to represent
different families of hypotheses. The tests in table 4 each give us a separate chance to determine whether
the program had a positive effect on children, whereas the tests in table 10 all relate to potential negative
effects of the program.
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2018). In our data, boys between the ages of six and 60 months are more than twice as likely

to consume infant formula than girls (p< 0.005) at follow-up, but consumption is small

overall (5.8% of boys versus 2.6% of girls). There are no significant differences by sex in the

probability of consuming any other drinks that might deliver pathogens.

Another candidate explanation is that girls are favored by households in the distribution

of eggs or meat. Regressing a series of binary indicators for having consumed different animal-

source foods in the past 24 hours on sex and age in months reveals no pattern of favoritism

towards girls or boys. Differences could be with respect to quantity, however. But any

existing bias in food distribution in the Guatemalan context seems more likely to favor boys

than girls (Frongillo and Beǵın, 1993). Our results could also be explained by differences in

breastfeeding patterns. For example, girls might stop exclusively breastfeeding earlier than

boys, and move on to complementary foods. Our data do not have detailed information

on breastfeeding, so we turn to the the 2014-2015 National Survey of Maternal and Child

Health (NSMCH), which includes a random sample of 566 children between the ages of

zero and 60 months from Chiquimula. The NSMCH data show that conditional on age in

months, sex has no detectable correlation with whether a child is currently breastfeeding or

duration of breastfeeding. And as already noted, we find no differences in diet by sex among

children under 60 months of age in our own data. Overall, differences in breastfeeding and

consumption of complementary foods do not seem to provide an explanation for higher rates

of intestinal illness among boys. We do not have the data needed to consider other channels

of pathogen exposure, such as differences in the play habits of boys and girls.

Finally, several previous studies have evaluated policy changes that increased asset

ownership or control over income among women while affecting girls but not boys, including

Duflo (2003), Qian (2008), Matz and Narciso (2010), and de Carvalho Filho (2012), while

suggesting improved women’s bargaining strength as an explanation. Given our imprecise

impact estimates on chicken ownership, we cannot rule out improved bargaining strength

through greater asset ownership as a mechanism.
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Table 10: Intestinal illness, children ages 6 to 60 months

Intent-to-treat effects Sample averages

Girls Boys Difference Girls Boys Difference

Animal feces in or around the dwelling (0/1) 0.111 0.034 0.077 0.438 0.412 0.018
[-0.125, 0.346] [-0.100, 0.167] [-0.151, 0.305] [-0.074, 0.110]

(-0.150, 0.371) (-0.114, 0.181) (-0.216, 0.370) (-0.074, 0.110)

Intestinal illness in past 30 days (0/1) 0.067 0.082 -0.015 0.304 0.395 -0.098
[-0.056, 0.189] [-0.144, 0.308] [-0.204, 0.174] [-0.183, -0.013]**

(-0.091, 0.225) (-0.209, 0.373) (-0.204, 0.174) (-0.190, -0.006)++

Days with intestinal illness in past 30 days 0.356 0.202 0.154 1.861 2.761 -0.997
[-0.706, 1.418] [-1.662, 2.065] [-1.454, 1.761] [-1.753, -0.241]***

(-0.706, 1.418) (-1.662, 2.065) (-1.624, 1.931) (-1.922, -0.072)++

Observations 196 244 440 196 244 440

Notes: * p <0.10, ** p <0.05, *** p <0.01; + q <0.10, ++ q <0.05, +++ q <0.01, where q is the false discovery rate. 95% confidence inter-
vals in brackets, 95% false discovery rate-adjusted confidence intervals in parentheses. Standard errors and degrees of freedom estimated as in
Young (2016). All regressions include an intercept, indicators for thirteen strata, and child age in months. The standard errors for the rightmost
column are adjusted for clustering at the household level.
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6.3 Heterogeneous impacts on diet among children

Children in the poorest households enjoy the largest impacts on animal-source foods con-

sumption at follow-up, over two years after the start of the program. While we might expect

higher current consumption of animal-source foods to be accompanied by gains in height or

weight, we do not have strong evidence for heterogeneous impacts on Z-scores, stunting, or

underweight. One possible explanation for the disconnect between impacts on animal-source

foods and height and weight is that poorer households have had their chickens long enough

to enjoy increased access to animal source foods, but not long enough for chickens to reach

the end of their productive lives or for child height and weight to be affected. This situa-

tion might occur if the Mancomunidad opted to treat wealthier clusters first. We check this

possibility by regressing the chicken set delivery date (specified as the number of days from

an arbitrary point in time to the delivery date) on baseline household wealth and find no

relationship (p=0.566).

Another explanation is that the poorest children face additional constraints that pre-

vent them from transforming higher animal-source foods consumption into anthropometric

gains. Oral-fecal contamination, for example, has been blamed for the failure of nutritional

interventions and oral vaccines in other contexts (Ngure et al., 2014), motivating the in-

corporation of water, sanitation, and hygiene components into nutrition interventions (e.g.

Tofail et al. (2018)). As shown in table 10, 35% of children in our data set between the ages

of six and 60 months had diarrhea in the 30 days prior to follow-up interviews, suggesting

that oral-fecal contamination is common in the program’s intervention area.

Access to clean water is scarce in the Mancomunidad, and is likely a problem for house-

holds of all wealth levels. But hygiene appears to be positively correlated with wealth in our

data. Enumerators confirmed the presence of a hand-washing station with soap in about

50% of household at follow-up.7 Baseline wealth is 41% higher among households with a

7Note that we did not ask this question at baseline so it was not included in our machine learning analysis.
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hand-washing station than in households without. Children who reported having diarrhea

in the 30 days prior to follow-up data collection are from households with 10% less wealth

on average than their counterparts who did not report having diarrhea. Although household

wealth could be correlated with a variety of factors that mediate program impacts, it is at

least plausible that hygiene and sanitation considerations are partly responsible for the pat-

terns we see in impacts on anthropometrics and consumption of animal-source foods among

children.

7 Conclusion

We evaluated the chicken transfer and training component of a program seeking to build

resilience in rural Guatemala using a cluster-randomized phase-in design. We estimate pro-

gram intent-to-treat effects by comparing 14 clusters of communities assigned to receive the

program in its second year to 14 clusters assigned to receive the program in year four. At

follow-up, 36% of households assigned to treatment had participated in the program long

enough to plausibly have experienced impacts, whereas the same was true of 9% of house-

holds assigned to the control group.

We find no statistically significant average intent-to-treat effects on household-level

measures of expenditure, nutrient intake, diet quality, chicken ownership, egg consumption,

egg production and sales, and chicken management. In contrast, we find clear evidence for

large impacts on weight and height among girls between the ages of six and 60 months.

Most notably, stunting fell by 23.5 percentage points (± 19.4) among girls, an improvement

of 57% relative to the control group. We find no statistically significant average intent-to-

treat effects on height or weight among boys. Differences in height and weight impacts by sex

could be a product of higher rates of intestinal illness among boys. Importantly, the program

does not appear to have increased the rate or severity of intestinal illness among children.

Although we cannot reject the null of a zero average intent-to-treat effect on the one-day

37



dietary diversity score or an indicator for having consumed animal-source foods in the past

day for children of either sex, we do find evidence of heterogeneous effects for these two

indicators, with children from the poorest households experiencing the largest impacts on

consumption of animal source foods. But we find no corresponding heterogeneity in height

or weight impacts by wealth. Descriptive evidence suggests that differences in hygiene by

wealth could be to blame, as poor hygiene can lead to increased intestinal illness and reduced

absorption of nutrients.

We acknowledge that power hampers our ability to detect household-level effects. Fur-

thermore, the slow pace of program rollout and the typical productive lifespan of a naked-neck

chicken may have resulted in impacts dissipating for some households before follow-up data

were collected. As for impacts on health among children, the lack of effects on mechanisms

like chicken ownership and the fact that some households participated in other program

components complicates interpretation of our results. But we see the bulk of the evidence

presented here as pointing to chicken transfers driving improvements in health among girls.

The main policy implication of our results is that livestock transfer programs can have

dramatic impacts on child health even when undermined by shocks like disease outbreaks.

In addition, there is room to increase the effectiveness of livestock transfers through comple-

mentary interventions, such as training on nutrition and intrahousehold food distribution,

animal waste management, and improved hygiene. Future research can help improve live-

stock transfer effectiveness by building complementary interventions into randomized trials.

Researchers would also be well-advised to collect detailed intra-household data on the drivers

of treatment effect heterogeneity within the household, such as women’s bargaining strength

and how households divide food among their members.
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X. Jiang, H. Fujiwara, D.S. Ory, R. Young, and C.P. Stewart. 2017b. “Eggs Early in

42



Complementary Feeding Increase Choline Pathway Biomarkers and DHA: a Randomized

Controlled Trial in Ecuador.” The American Journal of Clinical Nutrition 106:1482–1489.

Imbens, G., and J. Angrist. 1994. “Identification and Estimation of Local Average Treatment

Effects.” Econometrica 62:467–475.

INCAP. 2012. “Food Composition Table for Central America and Panama (Tabla de Com-

posición de Alimentos de Centroamérica).” techreport, Nutrition Institute of Central

America and Panama (INCAP).

INE. 2015. “Republic of Guatemala: National Living Standards Survey of 2014 (República

de Guatemala: Encuesta Nacional de Condiciones de Vida 2014 ).” National Institute of

Statistics (Instituto Nacional de Estad́ıstica).

Janzen, S., N. Magnan, S. Sharma, and W. Thompson. 2018. “Short-Term Impacts of a

Pay-It-Forward Livestock Transfer and Training Program in Nepal.” AEA Papers and

Proceedings 108:422–25.

Jin, M., and L.L. Iannotti. 2014. “Livestock production, animal source food intake, and

young child growth: The role of gender for ensuring nutrition impacts.” Social Science &

Medicine 105:16–21.

Jodlowski, M., A. Winter-Nelson, K. Baylis, and P.D. Goldsmith. 2016. “Milk in the Data:

Food Security Impacts from a Livestock Field Experiment in Zambia.” World Development

77:99–114.

Kafle, K., A. Winter-Nelson, and P. Goldsmith. 2016. “Does 25 cents more per day make

a difference? The impact of livestock transfer and development in rural Zambia.” Food

Policy 63:62–72.

Krishna, A., M. Poghosyan, and N. Das. 2012. “How Much Can Asset Transfers Help the

43



Poorest? Evaluating the Results of BRAC's Ultra-Poor Programme (2002–2008).” Journal

of Development Studies 48:254–267.

Lakens, D. 2016. “Why you don’t need to adjust your alpha level for all tests you’ll do in

your lifetime.” Web site.

Lee, D. 2009. “Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treat-

ment Effects.” The Review of Economic Studies 76:1071–1102.

Lobell, D.B., M. Bnziger, C. Magorokosho, and B. Vivek. 2011. “Nonlinear Heat Effects on

African Maize as Evidenced by Historical Yield Trials.” Nature Climate Change 1:42–45.

MacKinnon, J., and H. White. 1985. “Some Heteroskedasticity-Consistent Covariance Matrix

Estimators with Improved Finite Sample Properties.” Journal of Econometrics 29:305–

325.

Matz, J.A., and G. Narciso. 2010. “Does Reinforcing Spouses Land Rights Improve Childrens

Outcomes? Evidence from a Quasi-Natural Experiment in Rural Vietnam.” Institute for

International Integration Studies Discussion Paper 348.

Miller, L.C., N. Joshi, M. Lohani, B. Rogers, M. Kershaw, R. Houser, S. Ghosh, J.K. Grif-

fiths, S. Mahato, and P. Webb. 2016. “Duration of programme exposure is associated

with improved outcomes in nutrition and health: the case for longer project cycles from

intervention experience in rural Nepal.” Journal of Development Effectiveness 9:101–119.

Miller, L.C., N. Joshi, M. Lohani, B. Rogers, M. Loraditch, R. Houser, P. Singh, and S. Ma-

hato. 2014. “Community development and livestock promotion in rural Nepal: Effects on

child growth and health.”, pp. .

Ministry of Public Health and Social Assistance. 2017. “National Survey of Maternal and

Child Health 2014-2015: Final Report.” Working paper, Ministry of Public Health and

Assistance, National Institute of Statistics, and ICF International.

44



Misha, F.A., W.A. Raza, J. Ara, and E. van de Poel. 2019. “How Far Does a Big Push Really

Push? Long-Term Effects of an Asset Transfer Program on Employment Trajectories.”

Economic Development and Cultural Change, sep, pp. 000–000.

Multilateral Investment Fund. 2018. “Project Status Report (Reporte de Estado del

Proyecto).”

National Institute of Population Research and Training. 2016. “Bangladesh Demographic

and Health Survey 2014.” Working paper, NIPORT, Mitra and Associates, and ICF In-

ternational, Dhaka, Bangladesh.

National Institute of Statistics of Rwanda. 2015. “2014-2015 RDHS Key Findings.” Working

paper, NISR, Ministry of Health, and ICF International, Rockville, MD.

Nepal Ministry of Health. 2016. “Nepal: 2016 Demographic and Health Survey Key Find-

ings.” Working paper, Ministry of Health, Nepal, Kathmandu.

Ngure, F., B. Reid, J. Humphrey, M. Mbuya, G. Pelto, and R. Stoltzfus. 2014. “Water,

sanitation, and hygiene (WASH), environmental enteropathy, nutrition, and early child

development: making the links.” Annals of the New York Academy of Sciences 1308:118–

128.

Padilla, V.F. 2017. “Comsultancy for the Description of Regional Mechanisms for the Mar-

keting of Basic Grains and the Efficiency of the Production Systems of CUNORI: Final

Report.” Working paper, Opportunities and New Businesses.

Qian, N. 2008. “Missing Women and the Price of Tea in China: The Effect of Sex-Specific

Earnings on Sex Imbalance.” Quarterly Journal of Economics 123:1251–1285.

Rawlins, R., S. Pimkina, C.B. Barrett, S. Pedersen, and B. Wydick. 2014. “Got milk? The

impact of Heifer International’s livestock donation programs in Rwanda on nutritional

outcomes.” Food Policy 44:202–213.

45



Raza, W.A., E.V. de Poel, and T.V. Ourti. 2018. “Impact and spill-over effects of an asset

transfer program on child undernutrition: Evidence from a randomized control trial in

Bangladesh.” Journal of Health Economics 62:105–120.

Roodman, D., M.Ø. Nielsen, J.G. MacKinnon, and M.D. Webb. 2019. “Fast and wild: Boot-

strap inference in Stata using boottest.” The Stata Journal: Promoting communications

on statistics and Stata 19:4–60.

Roy, S., J. Ara, N. Das, and A.R. Quisumbing. 2015. ““Flypaper effects” in transfers targeted

to women: Evidence from BRAC's “Targeting the Ultra Poor” program in Bangladesh.”

Journal of Development Economics 117:1–19.

Sonaiya, E., and S. Swan. 2004. Small-Scale Poultry Poultry Production: Technical Guide.

Food and Agriculture Organization of the United Nations.

Tofail, F., L. Fernald, K. Das, M. Rahman, T. Ahmed, K. Jannat, L. Unicomb, B. Arnold,

S. Ashraf, P. Winch, P. Kariger, C. Stewart, J. Colford, and S. Luby. 2018. “Effect of Water

Quality, Sanitation, Hand Washing, and Nutritional Interventions on Child Development

in Rural Bangladesh (WASH Benefits Bangladesh): a Cluster-Randomised Controlled

Trial.” The Lancet Child & Adolescent Health 2:255–268.

Wong, J., J. de Bruyn, B. Bagnol, H. Grieve, M. Li, R. Pym, and R. Alders. 2017. “Small-

scale poultry and food security in resource-poor settings: A review.” Global Food Security

15:43–52.

World Bank. 2019a. “GDP per capita, PPP.” Accessed October 1, 2019.

—. 2019b. “GINI index (World Bank estimate).” Accessed October 1, 2019.

—. 2019c. “Rural population (% of total population).” Accessed October 1, 2019.

World Food Program. 2008. “Food Consumption Analysis: Calculation and Use of the Food

Consumption Socre in Food Security Analysis.” Working paper, World Food Program.

46



—. 2018. “Guatemala.”

World Health Organization. 2011. “WHO Anthro version 3.2.2.”

Young, A. 2016. “Improved, Nearly Exact, Statistical Inference with Robust and Clustered

Covariance Matrices using Effective Degrees of Freedom Corrections.” Unpublished.

Zou, H., and T. Hastie. 2005. “Regularization and variable selection via the elastic net.”

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67:301–320.

47


	Working Paper Mullaly
	guatemala_paper
	Introduction
	Background
	Evaluation design and data
	Evaluation design
	Data collection and sample construction
	Baseline summary statistics and balance

	Empirical approach
	Estimation and inference for average intent-to-treat effects
	Estimation and inference for heterogeneous intent-to-treat effects

	Results
	Average intent-to-treat effects on households
	Average intent-to-treat effects on children
	Robustness checks on average intent-to-treat effects
	Heterogeneous intent-to-treat effects

	Discussion
	Are our household-level results consistent with a well-functioning program?
	Explaining larger average impacts on girls than boys
	Heterogeneous impacts on diet among children

	Conclusion


