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Abstract 

Carolyn Heinrich∗ Alessandro Maffioli∗∗ Gonzalo Vázquez∗∗∗ 
 

 

 
The use of microeconometric techniques to estimate the effects of development 
policies has become a common approach not only for scholars, but also for 
policy-makers engaged in designing, implementing and evaluating projects in 
different fields. Among these techniques, Propensity-Score Matching (PSM) is 
increasingly applied in the policy evaluation community. This technical note 
provides a guide to the key aspects of implementing PSM methodology for an 
audience of practitioners interested in understanding its applicability to specific 
evaluation problems. The note summarizes the basic conditions under which PSM 
can be used to estimate the impact of a program and the data required. It explains 
how the Conditional Independence Assumption, combined with the Overlap 
Condition, reduces selection bias when participation in a program is determined 
by observable characteristics. It also describes different matching algorithms and 
some tests to assess the quality of the matching. Case studies are used throughout 
to illustrate important concepts in impact evaluation and PSM. In the annexes, the 
note provides an outline of the main technical aspects and a list of statistical and 
econometric software for implementing PSM. 
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1. Introduction 

Of fundamental interest in all program evaluation efforts is whether a particular intervention, as 

designed, is effective in accomplishing its primary objectives. A well-designed intervention (or 

“treatment”) is typically based on theory or research evidence that articulates how the 

intervention's core mechanisms will work to achieve its goals and produce the desired outcomes. 

The main challenge of a credible impact evaluation is the construction of the counterfactual 

outcome, that is, what would have happened to participants in absence of treatment. Since this 

counterfactual outcome is never observed, it has to be estimated using statistical methods. 

Experimental evaluation, in which assignment to treatment (or participation in the 

intervention) is random, has increasingly been encouraged and used in evaluating interventions 

because of its statistical advantages in identifying program impacts. Random assignment is used 

to assure that participation in the intervention is the only differentiating factor between units 

subject to the intervention and those excluded from it, so that the control group can be used to 

assess what would have happened to participants in the absence of the intervention.  

Although random assignment is an extraordinarily valuable tool for evaluation, it is not 

always feasible to implement it. Not only is it costly to obtain cooperation of implementers of the 

intervention and study subjects, but a random assignment design must be developed and 

implemented prior to the start of the intervention. Considerable progress may be made, however, 

in understanding the effectiveness of interventions on core outcomes of interest through the 

application of rigorous nonexperimental evaluation methods. In addition to providing direct 

estimates of program effects on relevant outcomes, such methods can also address a variety of 

related and subsidiary questions, such as: are some interventions more effective for particular 

types of groups or units than others? What factors outside the control of the implementers 

influence outcomes, and how might the intervention be modified to account for them? 

This evaluation guide focuses on a specific nonexperimental evaluation method known as 

Propensity-score matching (PSM). PSM uses information from a pool of units that do not 

participate in the intervention to identify what would have happened to participating units in the 

absence of the intervention. By comparing how outcomes differ for participants relative to 

observationally similar nonparticipants, it is possible to estimate the effects of the intervention. 

In recent years, facilitated in part by improvements in computing capacity and associated 
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algorithms, approaches that directly match participants with nonparticipants who have similar 

characteristics have replaced regression as one of the preferred methods for estimating 

intervention impacts using comparison group data. 

The general idea of matching is straightforward. In absence of an experimental design, 

assignment to treatment is frequently nonrandom, and thus, units receiving treatment and those 

excluded from treatment may differ not only in their treatment status but also in other 

characteristics that affect both participation and the outcome of interest. To avoid the biases that 

this may generate, matching methods find a nontreated unit that is “similar” to a participating 

unit, allowing an estimate of the intervention’s impact as the difference between a participant 

and the matched comparison case. Averaging across all participants, the method provides an 

estimate of the mean program impact for the participants.  

One of the critical issues in implementing matching techniques is to define clearly (and 

justify) what “similar” means. Although it might be relatively simple to assign a comparison unit 

based on a single observable characteristic, in practice, if the matching process is to successfully 

mitigate potential bias, it has to be done considering a full range of covariates across which the 

treatment and comparison units might differ. 

Propensity-score matching, one of the most important innovations in developing 

workable matching methods, allows this matching problem to be reduced to a single dimension. 

The propensity score is defined as the probability that a unit in the combined sample of treated 

and untreated units receives the treatment, given a set of observed variables. If all information 

relevant to participation and outcomes is observable to the researcher, the propensity score (or 

probability of participation) will produce valid matches for estimating the impact of an 

intervention. Therefore, rather than attempting to match on all values of the variables, cases can 

be compared on the basis of propensity scores alone.  

The PSM technique has been applied in a very wide variety of fields in the program 

evaluation literature. For example, Heckman, Ichimura and Todd (1998), Lechner (1999), 

Dehejia and Wahba (2002), and Smith & Todd (2005) use PSM techniques to estimate the 

impact of labor market and training programs on income; Jalan and Ravallion (2003) evaluate 

antipoverty workfare programs; Galiani, Gertler and Schargrodsky (2005) study the effect of 

water supply on child mortality; Trujillo, Portillo and Vernon (2005) analyze the impact of 

health insurance on medical-care participation; Almus and Czarnitzki (2003) and Moser (2005) 
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evaluate the impact of research and development subsidies and patent laws on innovation; Lavy 

(2002) estimates the effect of teachers’ performance incentives on pupil achievement; and 

Persson, Tabellini and Trebbi (2003) analyze the impact of electoral reform on corruption. 

The main goal of this document is to provide a guideline for implementing the PSM 

estimator. Throughout this guide, we use case studies to illustrate important concepts in impact 

evaluation and PSM. The first case (Box 1) on estimating the impact of training programs for 

youth describes various types of evaluation questions that are frequently of interest in 

evaluations and explains why nonexperimental methods are often required to fully address them. 

Section two provides some background on program-evaluation issues and introduces the 

idea of matching techniques. Section three describes in which context matching is a valid 

approach, considering theoretical assumptions and data-availability issues, and section four 

explains the basic mechanics of this technique. The main concerns in implementing matching 

estimators—namely, the estimation of the propensity score, the selection of a matching algorithm 

and the estimation of the treatment effect—are discussed in section five. Section six presents 

some tests to evaluate the validity of the assumptions and assess the quality of the matching. 

Finally, section seven discusses further issues like the calculation of standard errors and 

addressing some of the problems that may arise when implementing PSM techniques. Section 

eight concludes. 

Box 1: Estimating the Impact of Training Programs for Youth 

Introduction. In developing countries, it is not uncommon for youth to leave school before 

completing their secondary education. However, structural economic changes associated with 

increased economic openness have decreased labor demand in the lower-skilled, labor-

intensive sectors, reducing employment among youth and widening wage gaps and economic 

inequality between those with higher and those with lower educational levels.  

In Honduras, many poor youth have inadequate knowledge and skills to compete in the 

labor market. Approximately 25 percent of Honduran youth between 15-19 years of age neither 

attended school nor worked (the highest rate in Central America) in 2006, and those who did 

find a job in the labor market were often poorly prepared and/or trapped in poor-quality jobs 
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with low incomes. A pilot program, Mi Primer Empleo (MPE), was developed by the 

government of Honduras to promote youth employment by providing young people with life 

and work skills, specific job training, and an internship directly linked to the training. 

Random assignment evaluation strategy. The government and pilot program funders 

worked to develop an impact-evaluation strategy. Because more eligible youth were expected 

to apply to the program than could be treated with the available funds, the government chose 

an experimental, random assignment strategy for enrolling eligible youth. Typical ethical 

concerns about excluding youth from services were mitigated by the fact that limited funds 

required rationing of services; random assignment would give every young applicant an equal 

chance of participation. Those randomly assigned to receive program services formed the Mi 

Primer Empleo treatment group, and those randomized out formed the control group (see 

figure B.1). 

Figure B.1 Mi Primer Empleo – Assignment Mechanism 

 
 



A primary advantage of an experimental approach to evaluation, in which assignment 

to participation in the intervention is random, is that it assures that participation in the 

intervention is the only factor that differs between those in the treatment group and those 

excluded from participating (the control group). In this regard, the control group serves as a 

perfect proxy for estimating the counterfactual outcome, that is, what would have happened to 

the treatment group in the absence of the intervention. 

The average treatment effect (ATE) estimate generated by an evaluation that compares 

the average outcomes of Mi Primer Empleo participants with average outcomes of those in the 

control group of eligible youth will tell the government the average impact of the program on 

eligible youth who apply to the program (also known as the “intent to treat” estimate). This is 

one of the most commonly estimated impacts in random assignment evaluations. However, as 

in the case of many such experiments, nonexperimental evaluation methods would be needed 

to address a number of other questions of importance to the government about this program’s 

effectiveness. 

For example, not all youth who are assigned to receive treatment (i.e., to participate in 

Mi Primer Empleo) will show up. Some youth may get a job on their own, and others may 

decide they are not interested in the services offered. To estimate the Average Treatment 

Effect on the Treated (or ATT), analyses that compare participants to a similar group of 

eligible nonparticipants from the control group are necessary. 

However, given that those who follow through in participating may very well be 

systematically different from those who are assigned to treatment but do not participate, it may 

not be appropriate to simply compare those randomized to treatment with those in the 

randomized-out control group. The voluntary nature of participation in many interventions 

introduces the potential for selection bias, where we only observe outcomes for a nonrandom 

subsample of all units assigned to treatment. This is an example where propensity-score 

matching (PSM) could be used to match participants with members of the control group who 

are similar in the same selective ways as those who receive services. 

In addition, after being selected to participate in Mi Primer Empleo, youth were 

assigned to a service provider for structured job training in particular areas (e.g., agrobusiness, 

tourism, forestry, etc.). One of the government’s objectives was to give priority to those 
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employment clusters it had identified as having particularly high potential for economic 

development, such as tourism, maquiladora, etc. If the government wanted to know if training 

in agrobusiness was more effective than training in tourism in connecting youth with jobs, it 

could not simply compare differences in outcomes between the subgroups of treatment youth 

assigned to the different training categories with those in the control group. Again, it would 

need to compare tourism trainees with similar youth in the control group. Furthermore, if the 

government wanted to know which agrobusiness training providers were most effective in 

serving the youth, they would need to use nonexperimental analyses to compare youth assigned 

to different agrobusiness training providers. 

In the Honduras case, it was not possible to randomly assign participating youth to the 

different types of training and internship services, as the government and providers had to take 

into consideration the location of the providers relative to the youths’ residences as well as the 

youths’ specific interests in training. Thus, this case represents an example of an intervention 

where, even with random assignment, experimental analyses alone would not suffice to 

generate information important to the government in making training investment decisions. 
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2. Why Use Matching  

The greatest challenge in evaluating any intervention or program is obtaining a credible estimate 

of the counterfactual: what would have happened to participating units if they had not 

participated? Without a credible answer to this question, it is not possible to determine whether 

the intervention actually influenced participant outcomes or is merely associated with successes 

(or failures) that would have occurred anyway. However, as its name implies, it is impossible to 

observe the counterfactual. Program evaluation faces a missing data problem, that the statistician 

Paul Holland called the Fundamental Problem of Causal Inference: it is impossible to observe 

the outcomes of the same unit in both treatment conditions at the same time (Holland, 1986). 

One feasible solution to this problem is to estimate the counterfactual outcome based on a 

group of nonparticipants and calculate the impact of the intervention as the difference in mean 

outcomes between groups (see Box 2 for a brief discussion on the definition of the impact of a 

program). However, this approach is only valid under a very precise condition: the comparison 

group must be statistically equivalent to the treated group. In other words, the groups must be 

identical except for the fact that one of them received the treatment. Thus, the main concern is 

how to find a proper comparison group. 

The impact of a treatment for an individual i, noted δi, is defined as the difference between the 

potential outcome in case of treatment and the potential outcome in absence of treatment: 

δi =Y1i −Y0 i  

In general, an evaluation seeks to estimate the mean impact of the program, obtained by 

averaging the impact across all the individuals in the population. This parameter is known as 

Average Treatment Effect or ATE: 

ATE = E δ( ) = E Y1 −Y0( )  

where E(.) represents the average (or expected value). 

Another quantity of interest is the Average Treatment Effect on the Treated, or ATT, 

which measures the impact of the program on those individuals who participated: 

Box 2: Defining the Impact of a Program 
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ATT = E Y1 −Y0 | D =1( ) 
Finally, the Average Treatment Effect on the Untreated (ATU) measures the impact that the 

program would have had on those who did not participate: 

ATU = E Y1 −Y0 | D = 0( ) 

The problem is that all of these parameters are not observable, since they depend on 

counterfactual outcomes. For instance, using the fact that the average of a difference is the 

difference of the averages, the ATT can be rewritten as: 

ATT = E Y1 | D =1( )− E Y0 | D =1( ) 

The second term, , is the average outcome that the treated individuals 

would have obtained in absence of treatment, which is not observed. However, we do observe 

the term , that is, the value of Y0 for the untreated individuals. Thus, we can 

calculate: 

E Y0 | D =1(

)

)

E Y0 | D = 0(

Δ = E Y1 | D =1( )− E Y0 | D = 0( ) 
What is the difference between Δ and the ATT? Adding and subtracting the term 

: E Y0 | D =1( )
Δ = E Y1 | D =1( )−E Y0 | D =1( )+E Y0 | D =1( )−E Y0 | D = 0( )
Δ = ATT +E Y0 | D =1( )−E Y0 | D = 0( )
Δ = ATT + SB

 

The second term, SB, is the selection bias: the difference between the counterfactual for 

treated individuals and the observed outcome for the untreated individuals. If this term is equal 

to 0, then the ATT can be estimated by the difference between the mean observed outcomes for 

treated and untreated:  

 
However, in many cases the selection bias term is not equal to 0 (see the teacher-

training example below). In these cases, the difference in means will be a biased estimator of 

the ATT. The main goal of an evaluation is to ensure that the selection bias is equal to 0 in 

order to correctly estimate the parameter of interest. 
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If participants are randomly assigned to an intervention, the average difference in outcomes 

between the treated and control units is due to the impact of the treatment (or possibly sampling 

error). As long as the sample is sufficiently large, differences in mean group outcomes should 

reflect the average impact of the intervention. Box 3 provides a brief description of the 

experimental method. 

In an experimental design, the assignment to treatment is determined by a purely random 

mechanism. For example, one could assign a number to each eligible individual and select the 

treated individuals by lottery. 

The main advantage of random assignment is that it guarantees that the treatment status 

(D) is uncorrelated with any other variables, both observable and unobservable, and, as a result, 

the potential outcomes will be statistically independent of the treatment status. In technical 

notation: 

Y1,Y0( )⊥D  

This means that with random assignment, all the characteristics of the individuals are 

equally distributed between treated and untreated groups (i.e., the proportions are the same). 

On average, the groups will be identical, except for the fact that one of them received the 

treatment. This implies that: 

E Y0 | D =1( )= E Y0 | D = 0( ) 

which allows one to replace the left-hand side (unobservable) with the right-hand side, 

which is observable, to estimate the ATT. Thus, experimental design ensures that the selection 

bias term is 0, and therefore, the impact of the program can be estimated as a simple difference 

between the average outcomes between groups. The impact may also be estimated, with 

identical results, by running a linear regression of the outcome on the treatment status variable 

and a constant: 

Y = α + βD+ε  

where β captures the impact of the program. 

Box 3: Experimental Design 
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However, for many interventions, random assignment is not a feasible approach. In fact, it is 

frequently the case that assignment to treatment is intentionally nonrandom, such as the 

assignment of Honduran youth to particular training activities based on their interests and 

geographic location (see Box 1). In absence of an experimental design, the untreated group is 

unlikely to be a good comparison for the treated group because of selection bias. To further 

illustrate this problem, consider a teacher-training program where participation is voluntary. In 

this case, it is probable that the more motivated teachers will sign up for the program. However, 

it is also expected that more motivated teachers would have done better even in absence of the 

treatment, which means that their average value of Y0 is different from the corresponding value 

of nonparticipating teachers. As a consequence, when comparing the differences in mean 

outcomes (e.g. student performance) of treated and untreated teachers, it is difficult to isolate the 

impact of the training from the effect of greater motivation of the treated teachers. In this 

context, the simple estimator based on the difference in means between treated and untreated 

groups is tainted by self-selection bias. 

Selection bias may also arise from actions on the part of those implementing the 

intervention. For example, although one may account for explicit targeting criteria in designing 

an impact evaluation for an intervention, such as a health program oriented to low income 

families, if program administrators also selectively enroll families based on other, undocumented 

criteria such as the families’ apparent willingness to cooperate with treatment, administrative 

selection bias (or program placement bias) will result. In this example, participating families 

would be more cooperative than nonparticipating families, which might correlate with other 

unobserved characteristics of the families. 

It is also possible that, due to problems in the implementation process, an experimental 

evaluation design fails to produce a valid control group. For example, program administrators 

may circumvent procedures intended to ensure that assignment of units eligible for the 

intervention is random. This is not uncommon in situations when implementing staff are required 

to invite prospective subjects to participate in the intervention and then have to deny treatment 

after their expression of interest. In such cases, nonexperimental techniques may be required to 

adjust for the bias that arises. 
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 In sum, in the context of nonexperimental designs (or flawed experimental designs), it is 

necessary to account and adjust for differences between treated and untreated groups in order to 

properly estimate the impact of the program. 

We now introduce some notation to address these basic issues in more technical detail. 

We use Y1 and Y0 to denote the potential outcomes for a unit in presence and absence of the 

treatment, respectively. The observed outcome Y for an individual will be Y1 if the individual is 

treated and Y0 otherwise. We will use the binary variable D to indicate the treatment status of the 

observed units, namely, D=1 for those who participate and D=0 for those who do not participate. 

Then we can write the observed outcome as: 

Y = 1− D( )Y0 + DY1  

This expression should be interpreted as follows. When a given unit is treated, then D=1, 

and thus (1-D)=0. The observed outcome for this unit will be: 

Y = 0⋅ Y0 +1⋅ Y1 =Y1  

which means that the observed outcome (Y) for treated units is equal to the potential 

outcome in case of treatment (Y1). In this case, the potential outcome in absence of treatment, Y0, 

is not observed: since the unit was treated, it is impossible to know what would have happened to 

this unit in absence of treatment. For a treated unit, Y0 is the counterfactual. Similarly, when the 

unit is not treated, D=0 and (1-D)=1, and thus Y=Y0. In this case, the counterfactual is Y1. 

Evaluations employing random assignment methods assure that the treatment is 

independent of Y0 and Y1 and the factors influencing them. The average treatment effect for those 

subject to random assignment may be estimated as the simple difference in mean outcomes for 

those assigned to treatment and those assigned to the control group. Without random assignment, 

where treatment (D) may be correlated with factors influencing Y0 and Y1, participants may differ 

from nonparticipants in many ways besides the effect of the program, so the simple difference in 

outcomes between participants and nonparticipants will not necessarily identify the impact of the 

intervention.  

Matching methods are designed to ensure that impact estimates are based on outcome 

differences between comparable individuals. The basic idea behind matching can be traced to 

early statistical work, although the development of matching methods in the last 25 years 

(Rosenbaum and Rubin, 1983) and recent increases in computing power have facilitated their 
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wider implementation. The simplest form of matching pairs each participant to a comparison 

group member with the same values on observed characteristics (collected in a vector X). If the 

number of variables in X is large, such an approach may not be feasible. The alternative applied 

in propensity-score matching is to compare cases that are “close” in terms of X, where 

participating units are matched with untreated units based on an estimate of the probability that 

the unit receives the treatment (the propensity score), as will be discussed in section five. 

The matching estimator will not necessarily work in all circumstances; specific 

conditions have to be met to produce valid impact estimates. First, if the condition requiring one 

to find untreated units that are similar in all relevant characteristics to treated units is to be 

satisfied, it is clear that these characteristics must be observable to the researcher. In other words, 

PSM requires selection on observables; the inability of the researcher to measure one or more 

relevant characteristics that determine the selection process results in biased estimations of the 

impact of the program. Second, in order to assign a comparison unit to each treated unit, the 

probability of finding an untreated unit for each value of X must be positive. These issues will be 

addressed in the next section. 
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3. When to Use Matching: Assumptions and Data Requirements 

In order to determine if matching is likely to effectively reduce selection bias, it is crucial to 

understand under what conditions it is most likely to work. This section discusses these issues, 

emphasizing the theoretical assumptions underlying the matching estimator and the data 

requirements for implementing it. 

3.1 Assumptions 

In an experimental design, randomization ensures that all the relevant characteristics, either 

observable or unobservable, of the studied units are balanced (this means, they are equally 

distributed) between treatment and control group and, because of this, the difference in mean 

outcomes correctly estimates the impact of the intervention. In the absence of randomization, 

however, the groups may differ not only in their treatment status, but also in their values of X. In 

this case, it is necessary to account for these differences (in econometric jargon, to control for X 

or to condition on X) to avoid potential biases.  

To illustrate what this means, it is useful to think that controlling on X is done by 

stratifying the sample over X. For simplicity, consider the case where there is a single discrete 

variable X, such as level of educational attainment, that takes only a few values, for example, 

1=no school, 2=elementary, 3=secondary and 4=postsecondary. Then, the observations are 

grouped according to their values of X: all the units (both treated and untreated) with X=1 are 

grouped together, as are units with X=2, X=3 and X=4, making a total of four groups of treated 

and untreated units matched by education levels. The mean outcomes for treated and untreated 

units are compared for each one of these strata, and subsequently, the ATT can be computed by 

averaging these differences over the four groups. 

It is now clearer that two conditions must be satisfied to implement this estimator. First, 

the variables (X) on which the treated and untreated groups differ must be observable to the 

researcher. Although this may seem obvious for the simple example above, this assumption, 

known as the conditional independence or unconfoundedness assumption, becomes more subtle 

when a large number of variables may be potentially affecting the selection into the program. 

Second, in order to calculate the difference in mean outcomes for each value of X, for 

each possible value of the vector of covariates X, there must be a positive probability of finding 
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both a treated and an untreated unit to ensure that each treated unit can be matched with an 

untreated unit. If some units in the treatment group have combinations of characteristics that 

cannot be matched by those of units in the comparison group, it is not possible to construct a 

counterfactual, and therefore, the impact for this subgroup cannot be accurately estimated. This 

is commonly known as the common support or overlap condition. 

Box 4 presents a summary of these assumptions in more technical terminology. 

 

Box 4: PSM Assumptions 

Assumption 1 (Conditional Independence Assumption or CIA): there is a set X of covariates, 

observable to the researcher, such that after controlling for these covariates, the potential 

outcomes are independent of the treatment status: 

( ) XDYY |, 01 ⊥  

This is simply the mathematical notation for the idea expressed in the previous 

paragraphs, stating: the potential outcomes are independent of the treatment status, given X. Or, 

in other words: after controlling for X, the treatment assignment is “as good as random”. 

This property is also known as unconfoundedness or selection on observables. The CIA 

is crucial for correctly identifying the impact of the program, since it ensures that, although 

treated and untreated groups differ, these differences may be accounted for in order to reduce 

the selection bias. This allows the untreated units to be used to construct a counterfactual for 

the treatment group. 

 

Assumption 2 (Common Support Condition): for each value of X, there is a positive 

probability of being both treated and untreated: 

( ) 1|10 <=< XDP  

This last equation implies that the probability of receiving treatment for each value of X 

lies between 0 and 1. By the rules of probability, this means that the probability of not 

receiving treatment lies between the same values*. Then, a simple way of interpreting this 

formula is the following: the proportion of treated and untreated individuals must be greater 
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than zero for every possible value of X. The second requirement is also known as overlap 

condition, because it ensures that there is sufficient overlap in the characteristics of the treated 

and untreated units to find adequate matches (or a common support). 

When these two assumptions are satisfied, the treatment assignment is said to be 

strongly ignorable (Rosenbaum & Rubin, 1983)** 
 
* This is because P D=0 | X( ) =1−P D=1| X( ) 
** In fact these conditions may be relaxed when the parameter of interest is the ATT. See Appendix 1. 

 

3.2 Data Requirements 

The data (variables) available for matching are critical to justifying the assumption that, once all 

relevant observed characteristics are controlled, comparison units have, on average, the same 

outcomes that treated units would have had in the absence of the intervention. Since in many 

cases the researcher does not know precisely the criteria that determine participation, it is 

common to control for all the variables that are suspected to influence selection into treatment 

(although controlling for too many variables could generate problems with the common support: 

see section 6.1). As a result, the researcher should have access to a large number of variables to 

be able to correctly characterize the propensity score. 

Prior evaluation research has also shown that it is important for data for both the 

treatment and comparison units to be drawn from the same sources (i.e., the same data-collection 

instruments), so that the measures used (for control and outcome variables) are identical or 

similarly constructed. In cases where the data on treated units and comparison units derive from 

different sources, it is critical to attempt to ensure that the variables are constructed in the same 

way (e.g., under the same coding conventions). Any missing data should also be handled 

similarly for treated and untreated units. Although data errors are always a potential issue, the 

bias in impact estimates may be relatively small if data errors have the same structure for treated 

and comparison units. In contrast, if there are systematic differences in the way that errors are 

introduced, particularly for outcome measures, even small differences may induce substantial 

biases in impact estimates. 
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Finally, to obtain impact estimates that are generalizable to the population of interest, it is 

necessary for the pool of comparison units to have a sufficient number of observations with 

characteristics corresponding to those of the treated units. If the comparison pool is large enough, 

adequate matches may be possible even if the average unmatched characteristics are very 

different. If the variables in question are of substantial importance, however, it may be necessary 

to discard treated units whose characteristics cannot be matched in estimating impacts. 

Because of its large data requirements (regarding both the number of variables and the 

sample size), the PSM methodology is often described as a “data-hungry method”. When data 

are scarce, the appropriateness of this technique should be carefully analyzed. 
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4. Basic Mechanics of Matching  

To understand the basic mechanics of matching methods, consider the following very simple 

example in which we want to calculate the ATT of a treatment D on the income level of the 

treated individuals. In this case X represents a single discrete variable, namely, education level. 

The database is presented in table 1. 

Table 1 PSM – A Very Simple Example 

i D Education Income 

1 0 2 60 

2 0 3 80 

3 0 5 90 

4 0 12 200 

5 1 5 100 

6 1 3 80 

7 1 4 90 

8 1 2 70 
 

When D=1, the observed outcome is equal to the potential outcome under treatment, Y1, 

and when D=0, the observed outcome is the potential outcome in absence of treatment, Y0. For 

each treated unit, the comparison unit is the untreated unit with most similar characteristics (or 

value of X). This special case of matching is called nearest neighbor covariate matching; the 

counterfactual outcome of the treated units is estimated by the observed outcome of the most 

similar untreated unit1. The results of the matching are shown in table 2. 

 

 

 

 

                                                 
1 If two untreated units share the same value of X, we average the outcome between the two. 
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Table 2 A Very Simple Example (continued) 

i D Education Income Match Y1 Y0 Difference

1 0 2 60 - - - - 

2 0 3 80 - - - - 

3 0 5 90 - - - - 

4 0 12 200 - - - - 

5 1 5 100 [3] 100 90 10 

6 1 3 80 [2] 80 80 0 

7 1 4 90 [2.3] 90 85 5 

8 1 2 70 [1] 70 60 10 
 

Finally, the ATT is estimated by taking the differences between Y1 (observed) and Y0 

(estimated), and averaging over all the treated units. In this case, the estimated ATT is 

(10+0+5+10) / 4 = 6.25. 

Although the calculation of the matching estimator is very simple for this example, this 

case is far from the typical reality. The major practical problem arises when there are numerous 

differences between treated and untreated units to control for; this is the rule rather than the 

exception. 

An intuitive way of understanding the problem of dimensionality, to which matching estimators 

are subject, is the following. We saw that the idea of matching techniques is to match treated 

individuals with untreated units that are similar or close in terms of X. When X is a single 

variable, as in the example above, the meaning of the word “similar” is clear: if we take a 

treated and an untreated unit, the closer their values of X, the more similar the units are. Say X 

represents the income of an individual. Comparing the treated individual A with income 

X=1000 to two untreated individuals, B and C, with incomes 1100 and 2000 respectively, it is 

very easy to see that unit B is closer to A than C is.  

Box 5: The Curse of Dimensionality 
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However, imagine that we need to match observations on both income (I) and years of 

education (E). In this case the vector X contains the two variables: X=(I,E). Suppose that we 

want to pair individual A, who has X=(1000,5) with individuals B or C, who have X=(1100,12) 

and X=(2000,8), respectively. Which of the two untreated individuals, B or C, are closer to A? 

There is not an obvious answer to this question: individual B is closer to A in terms of income, 

but farther in terms of years of education. More generally, when working on multiple 

dimensions (that is, with many variables), the idea of “closeness” is not clearly defined.  

 

The solution proposed by the statisticians Paul Rosenbaum and Donald Rubin to the 

dimensionality problem (discussed in Box 5) is to calculate the propensity score, which is the 

probability of receiving the treatment given X, noted ( )XDP |1=  or simply . Rosenbaum 

and Rubin (1983) proved a key result that forms the theoretical basis of PSM: when it is valid to 

match units based on the covariates X, it is equally valid to match on the propensity score. In 

other words, the probability of participation summarizes all the relevant information contained in 

the X variables. The major advantage realized from this is the reduction of dimensionality, as it 

allows for matching on a single variable (the propensity score) instead of on the entire set of 

covariates. 

( )Xp

In effect, the propensity score is a balancing score for X, assuring that for a given value of 

the propensity score, the distribution of X will be the same for treated and comparison units. 

Appendix 1 further illustrates this key result. 

Using this result, the procedure for estimating the impact of a program can be divided 

into three straightforward steps: 

1. Estimate the propensity score 

2. Choose a matching algorithm that will use the estimated propensity scores to match 

untreated units to treated units 

3. Estimate the impact of the intervention with the matched sample and calculate standard 

errors. 

These steps are addressed in detail in the next section. 

 

21 
 



5. How to Implement Propensity-Score matching (PSM) 

5.1. Characterizing the Propensity Scores 

The first step in PSM analysis is to estimate the propensity score. Normally, a logit or probit 

function is used for this purpose, given that treatment is typically dichotomous (i.e., D=1 for the 

treated and D=0 for untreated units). It is critical that a flexible functional form2 be used and that 

all relevant covariates that relate to treatment status and outcomes are included in this model (to 

account for differences between treated and untreated units, as described in the preceding 

sections). 

For a binary treatment variable, there is no strong advantage to using the logit vs. probit 

model, although both are typically preferred to a linear probability model, which is known to 

produce predictions outside the [0, 1] bounds of probabilities. 

One of the key issues in characterizing the propensity score is the specification of the 

selection model, i.e., the identification of the variables that determine the participation. In most 

cases, there will be no comprehensive list of clearly relevant variables that will assure that the 

matched comparison group will provide an unbiased impact estimate. For each evaluation, it is 

important to consider what factors make the comparison units distinct from treated units. To the 

extent that these factors are associated with outcomes, controls for them are essential. 

One obvious set of factors to include in PSM estimation are explicit criteria used in 

determining participation in the intervention, such as a project or program’s eligibility or 

admission criteria. It is important to consider factors associated with both self-selection, such as 

a youth’s distance from the location for applying for a training opportunity, as well as 

administrative selection, which may involve discretionary as well as overt criteria. Other 

institutional factors or implementation variables that might also influence take-up of treatment 

should, to the extent measurable, also be included. In cases such as the Mi Primer Empleo 

program (see Box 1), where there are more units qualified for treatment than there are treatment 

slots available, using the eligible units excluded from treatment as the comparison group may 

eliminate the need to control for some of the self- or administrative-selection factors that 

                                                 
2 Flexible functional forms allow capturing possible nonlinearities of the participation model. To do this, in addition 
to the covariates, higher-order terms (like quadratic, cubic, etc) and / or interaction terms can be added to the model. 
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determine who or which units apply for treatment. Section 6.1 provides a guideline to assess the 

validity of the selection model. 

An example of a participation model is presented in Box 6. 

 

Box 6: Characterizing the Participation Model 

To evaluate the impact of Ecuador’s Agricultural Services Modernization Program 

(PROMSA), Maffioli, Valdivia and Vázquez (2009) implement a PSM estimator using farm-

level data. The propensity score is estimated using various socio-demographic characteristics 

of farmers, namely: age, years of education, cohort dummies, gender and ethnic origin (a 

dummy equal to 1 if the farmer is indigenous), together with some higher order terms (like age 

and education squared) and interaction terms (age interacted with gender, etc). Table B.1 in the 

next page shows the results for the participation model.  

Looking at the standard errors (shown in parentheses) we see that participation is 

clearly (nonlinearly) related to age, and that individuals without high school education have a 

higher probability of receiving treatment, although the number of years of education appears 

not to be significant. Furthermore, cohort and ethnic origin also affect the propensity score, 

while gender and the interaction terms do not seem to explain participation. 
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Table B.1 PROMSA participation model 

Variable Coefficient 
Age 0.688 
 (0.261)*** 
Age^2 -0.014 
 (0.005)** 
Age^3 0.00009 
 (0.00003)** 
Years of education 0.088 
 (0.26) 
Education^2 0.025 
 (0.04) 
Education^3 -0.001 
 (0.001) 
Primary education -0.35 
 (0.51) 
High school or more -1.457 
 (0.452)*** 
Born between 1930-1939 2.706 
 (1.105)** 
Born between 1940-1949 3.609 

 (1.442)** 
Born between 1950-1959 3.911 
 (1.552)** 
Born between 1960-1969 3.793 
 (1.545)** 
Born between 1970-1979 4.739 
 (1.555)*** 
Born between 1980-1989 5.045 
 (1.767)*** 
Gender 0.098 
 (0.75) 
Indigenous -0.29 
 (0.131)** 
Education*age -0.001 
 (0.002) 
Education*gender 0.051 
 (0.04) 
Gender*age -0.002 
 (0.01) 
Constant -16.873 
 (5.100)*** 
Observations 1179 

 
Standard errors in parentheses  
* Significant at 10%; ** significant at 5%; *** significant at 1% 
Source: Maffioli et al (2009) 
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5.2. Choosing a Matching Algorithm 

In choosing between different matching algorithms, that is, among alternative ways of using the 

propensity score to match comparison units with treated units, the following primary factors 

should be considered:  

1. Matching with or without replacement 

2. How to assess (or set the standard) for proximity, i.e., the closeness of the match 

3. Whether and how to weight cases in the analysis 

4. Number of comparison units matched to each treatment unit 

Early matching estimators paired units in the treated group with those in the comparison group 

on a one-to-one basis. For each treated case, a case in the comparison group that was most 

similar to that case—in terms of propensity score, in the case of propensity-score matching—

would be matched with it. In effect, the program impact for a particular treated case i was 

estimated as Y1i – Y0j(i), where Y0j(i) is the outcome for the comparison case that is matched with 

the treated case i. The estimated program impact was obtained as the average of this measure 

over all treated cases. Such pairwise matching was usually performed using sampling from the 

comparison group without replacement, meaning that each comparison group member could be 

included as a matched case only once. However, matching without replacement may perform 

poorly when there is little overlap of the propensity scores or when the control group is small, 

since treated units are matched to observations that are not necessarily similar (see Dehejia and 

Wahba, 2002, for further details). This is why it is now more common for studies to use 

sampling with replacement, allowing for one comparison case to serve as the match for more 

than one treated case. 

In addition, alternative approaches have recently been recognized as superior to pairwise 

matching. In contrast to matching one comparison group case with a given treated case, it has 

been found that estimates are more stable (and make better use of available data) if they consider 

all comparison cases that are sufficiently close to a given treated case. As indicated above, it is 

also important to include in the comparison only those cases that are sufficiently “close” to a 

given treated case. Although allowing a given case to be used in many comparisons may inflate 

sampling error, it is now generally accepted that the benefits of close matches outweigh these 

other costs. 
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The vast majority of studies using PSM measure the proximity of cases as the absolute 

difference in the propensity score. As Smith and Todd (2005) note, such an approach is not 

robust to “choice-based sampling,” where the treated are oversampled relative to their frequency 

in the population of eligible individuals (Caliendo & Kopeinig, 2005). Matching on the log odds 

of the propensity score, defined as p/(1-p), assures that results are invariant to choice-based 

sampling (see Box 7). 

 

 

Box 7: Matching with Choice-Based Sampling 

With choice-based sampling, the number of treated and comparison cases does not reflect the 

likelihood that an individual with given characteristics participates in the program in the full 

universe, but rather is determined by various factors outside the control—and knowledge—of 

the researcher. Matching on the log odds of the propensity score has the advantage that it 

“spreads out” the density of scores at very low or very high propensity scores. Use of the log 

odds also allows for a consistent bandwidth to be used. In addition, since the logit is used to 

predict propensity score, the log odds are a linear combination of the independent variables, 

and a constant radius is expected to translate into the same metric at different propensity score 

levels.  

Although the theory underlying propensity-score matching implies that as the sample size 

grows, matching on the propensity score also matches on all control variables, in any given 

application with a finite sample, there is no assurance that matches will be close enough to 

remove significant differences. In addition, since applications by necessity use a parametric 

structure to calculate the propensity score, inadequacies in the estimation method may cause 

further deviations. It is therefore necessary to compare the treated cases with the matched 

comparison cases. In general, if differences are too great, it may be necessary to alter the caliper 

used in the analysis or to modify the details of how the propensity score is estimated.  

Below are descriptions of the most commonly employed matching algorithms. 

Nearest neighbor matching is one of the most straightforward matching procedures. An 

individual from the comparison group is chosen as a match for a treated individual in terms of 

the closest propensity score (or the case most similar in terms of observed characteristics). 
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Variants of nearest neighbor matching include “with replacement” and “without replacement,” 

where, in the former case, an untreated individual can be used more than once as a match and, in 

the latter case, is considered only once.  

To avoid the risk of poor matches, radius matching specifies a “caliper” or maximum 

propensity score distance by which a match can be made. The basic idea of radius matching is 

that it uses not only the nearest neighbor within each caliper, but all of the comparison group 

members within the caliper. In other words, it uses as many comparison cases as are available 

within the caliper, but not those that are poor matches (based on the specified distance). 

In many-to-one (radius) caliper matching with replacement, the estimator of program 

impact may be written as: 

 
E ΔY( ) =

1
N

Y1i −Y0 j i( )[ ]
i=1

N

∑
 

where  Y 0 j i( )
  
is the average outcome for all comparison individuals who are matched with 

case i, Y1i is the outcome for case i, and N is the number of treated cases. This approach does not 

limit the number of cases that are matched with a given participant, as long as those cases are 

“close” enough. 

Kernel and local-linear matching are nonparametric matching estimators that compare 

the outcome of each treated person to a weighted average of the outcomes of all the untreated 

persons, with the highest weight being placed on those with scores closest to the treated 

individual. One major advantage of these approaches is the lower variance, which is achieved 

because more information is used. A drawback of these methods is that some of the observations 

used may be poor matches. Hence, the proper imposition of the common-support condition is of 

major importance for these approaches. When applying kernel matching, one also has to choose 

the kernel function and the bandwidth parameter. 

Unfortunately, there is no clear rule for determining which algorithm is more appropriate 

in each context. However, a key issue that should be considered is that the selection of the 

matching algorithm implies a bias / efficiency trade-off. For instance, by using only one nearest 

neighbor we guarantee that we are using the most similar observation to construct the 

counterfactual. This minimizes the bias, since the characteristics between both units will be, in 

general, very similar. However, using this technique ignores a lot of information from the 
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sample, since many untreated units are not used for the estimation. Therefore, the reduction in 

the bias comes with an increase in the imprecision of the estimates caused by a higher variance, 

i.e., a decrease in efficiency. On the other hand, when using many neighbors, the estimator is 

more efficient since it exploits a larger quantity of information from the untreated pool, but at the 

price of increasing the bias by using poorer matches. 

5.3. Estimating Intervention Impacts and Interpreting the Results 

After propensity scores have been estimated and a matching algorithm has been chosen, the 

impact of the program is calculated by just averaging the differences in outcomes between each 

treated unit and its neighbor (or neighbors). Any of a number of statistical software programs can 

be used to perform the matching and to generate estimates of the impact of the intervention. The 

statistical-analysis software most frequently used for PSM is Stata. A program developed by 

Leuven and Sianesi (2003), psmatch2, can be installed in Stata and used to implement PSM. The 

options for PSM techniques include nearest neighbor, caliper matching (with and without 

replacement), radius matching, kernel matching, local-linear matching and Mahalanobis metric 

(covariate) matching. The psmatch2 program also includes routines for common-support 

graphing (psgraph) and covariate imbalance testing (pstest).  

Becker and Ichino (2002) also provide a program for PSM estimation in Stata that 

includes estimation routines for nearest neighbor, kernel, radius, and stratification matching and 

balancing tests can also be performed with this program. 

Of course, it is not possible to interpret the results of the impact estimation without 

estimating the standard errors, which provide an indicator of the importance of sampling error in 

the estimates generated. Conventionally, standard errors of propensity score-matching estimates 

are obtained using bootstrap methods. In general, the bootstrap relies on sampling from the 

analysis sample with replacement, replicating the analysis multiple times. The estimated standard 

error is the standard deviation of the estimated-impact estimate across replications.  

Bootstrapping methods for calculating standard errors are easily implemented in 

psmatch2 or the Becker and Ichino PSM estimation program. 

There are several important limitations, however, to bootstrap standard errors. As is the 

case for estimation procedures for analytical standard errors, theorems supporting the use of 

bootstrapping show that bootstrapping produces error estimates that are asymptotically unbiased. 
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For finite (small) samples, there is no certainty that estimates will be unbiased. An additional 

problem with bootstrapping is the intensive computer resources required to estimate them; with 

large samples, it is not always feasible to calculate bootstrap standard errors for all estimates (see 

e.g., Lechner, 2001). 

Additional information on statistical software for PSM is shown in Appendix 2. 

When interpreting the results, it is important to evaluate the robustness of the estimations 

by changing the matching algorithms or by altering the parameters of a given algorithm. 

Robustness checks help increase the reliability of the results by showing that the estimations do 

not depend crucially on the particular methodology chosen. An example is shown in Box 8. 

 

 

Box 8: Checking the Robustness of the Results 

Using the propensity score estimated as shown in Box 6, Maffioli et al. (2009) match treated 

farmers with similar untreated farmers to evaluate the impact of PROMSA on different 

outcomes like productivity, use of technology, associability, type of purchaser and access to 

formal credit, among others. The authors find evidence of impact on type of purchaser, 

associability and access to formal credit, but no effect is found on productivity and 

technology. To make sure that these findings are not driven by the selection of a particular 

strategy, coefficients are estimated using different matching algorithms. The results of this 

robustness check are shown in table B.2. 
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Table B.2 Robustness Checks 

Outcome 
Nearest 

Neighbor 
(1) 

Nearest 
Neighbor 

(5) 

Caliper 
(0.001) 

Radius 
(0.001) 

Normal 
Kernel 

Productivity Index -29.9515 44.0525 33.587 59.0923 53.4409 
 (88.8228) (38.5607) (105.4436) (43.7452) (25.7168)** 
 [60.9315] [38.9558] [73.7986] [57.4125] [38.9506] 

 
Technology Index 0.1151 0.0362 0.1293 0.1093 -0.036 
 (0.1266) (0.0926) (0.1371) (0.1001) (0.0790) 
 [.177] [.1711] [.2105] [.2095] [.1568] 
      
Associability 0.6393 0.6707 0.6571 0.6797 0.674 
 (.0443)*** (.0315)*** (.0477)*** (.0325)*** (.0289)*** 
 [.0709]*** [.0812]*** [.0913]*** [.0758]*** [.0785]*** 

 
Type of purchaser 0.1378 0.1081 0.1494 0.1223 0.1136 
 (.0463)*** (.0323)*** (.0489)*** (.0341)*** (.0273)*** 
 [.0623]** [.0666] [.0635]** [.0601]** [.0485]** 

 
Access to formal credit 0.3441 0.3369 0.3782 0.3471 0.3461 
 (.0385)*** (.0325)*** (.0409)*** (.0346)*** (.0303)*** 
 [.0808]*** [.1071]*** [.1091]*** [.0986]*** [.1111]*** 

 
Note: each column reports the matching estimator with a different matching algorithm (1) nearest neighbor matching using 1 
nearest neighbor (2) nearest neighbor matching using 5 nearest neighbors (3) caliper mathing with a caliper of 0.001 (4) radius 
matching with a caliper of 0.001 (5) Kernel matching using Normal density function 
Standard errors in parentheses, bootstraped clustered standard errors at parroquia level in brackets 
* Significant at 10%; ** significant at 5%; *** significant at 1% 
Source: Maffioli et al (2009) 
 

The matching algorithms used are nearest neighbor (with one and five neighbors), 

caliper and radius (with a caliper of 0.001) and kernel (using a Normal density). Furthermore, 

standard errors are also estimated using bootstrap (in brackets). 

The case for productivity index with Normal kernel (line 1 in the above table) is a good 

example of a nonrobust result. Although there seems to be a positive effect of the treatment 

under one specification, the significance fades after slight changes in the estimation method. 

The impact found on associability, type of purchaser and access to formal credit, on the other 

hand, does not appear to depend critically on the algorithm used, since both the value of the 

coefficients and its significance are very similar using different alternatives. 



 

• Standard error estimation and statistical significance 

• Robustness checks. 

Box 9: Basic Steps in Implementing PSM 

1. Characterize the propensity score: 

• Define the selection model, using variables that: 

⇒ Affect both the probability of participation and the outcome 

⇒ Are not affected by the treatment 

• Estimate the propensity score P D =1| X( )  using a binary choice model (probit or logit) 

and calculate the predicted probabilities 

2. Choose an appropriate algorithm and perform the matching using the propensity score, 

considering: 

• The key parameters of each algorithm (number of neighbors, caliper, bandwidth, etc.) 

• The bias / efficiency trade-off 

3. Estimate the results, evaluating: 
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6. Testing Assumptions and Specification Tests 

As with any experimental or nonexperimental method used in impact evaluation, it is important 

to check the key assumptions that are made in the estimation and verify that the model 

specification is appropriate and that the results do not suffer from bias. 

6.1. CIA: Guidelines and Tests for Model Specification 

As explained earlier, the conditional independence assumption that we make in applying this 

method asserts that selection into the intervention is based only on observable characteristics of 

the eligible units, and that after conditioning on these variables influencing participation, the 

expected outcome in the absence of treatment does not depend on treatment status. 

Unfortunately, this assumption is not directly testable but still requires justification. 

If one cannot argue that selection into treatment is completely random, knowledge of the 

selection process is essential, as omitting important variables in estimation may contribute to bias 

in the results. In effect, this requires justification of the specification of the (first-stage) 

propensity score model. There are some basic guidelines for model specification that can be 

checked or verified: 

1. If explicit criteria are used in determining participation in the intervention, these variables 

should be included in estimating participation in treatment. The more transparent, precise 

and well-controlled the selection process, the more confidence one can have that all 

relevant variables are included. Frequently, knowledge of the institutional settings in 

which selection takes place is critical to model specification. 

2. Measures included in the first-stage model should either be stable (constant) over time, 

deterministic with respect to time (e.g., age) or measured before participation so that they 

are not confounded with outcomes or the anticipation of treatment. 

3. It is sometimes the case that one or more variables are particularly influential in 

determining participation, and one may want to “hard match” or “exact match” on such 

characteristics. Fundamentally, this requires performing the complete matching procedure 

separately for the subgroups defined by a given characteristic (e.g., separate estimation of 

the propensity score for men and women if the measure is gender). 
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4. Data for the treatment and comparison units should be drawn from the same sources (e.g., 

the same data-collection instruments) and the measures should be similarly constructed. 

5. A variable that captures some randomness in the selection process (i.e., a randomization 

device such as a quota) is particularly useful as it assures that units with similar (or the 

same) characteristics can be observed in both the treated and untreated states. 

6. Including irrelevant variables (that do not influence participation in the intervention) 

should be avoided so that they do not worsen the common support problem or 

unnecessarily increase the variance of the estimates. 

There are also somewhat more formal specification tests that one can conduct to assess the 

validity of the propensity score model specification. 

One very basic approach is to examine the statistical significance of the covariates and 

keep only those variables that are statistically significant and increase the predictive power of the 

model. One way to do this is to begin with a parsimonious model and add one covariate at a 

time, although even the most parsimonious model should include all variables explicitly known 

to influence selection (e.g., program-eligibility criteria). 

A related approach, described by Caliendo and Kopeinig (2005) as the “hit-or-miss” 

method, involves choosing variables so as to maximize the within-sample correct prediction rate. 

For each observation, the estimated propensity score is compared to the sample proportion of 

units taking up the treatment, and the observations are classified based on whether the propensity 

score is larger or smaller than this proportion. For both of these above approaches, it is important 

to keep in mind that the primary goal is to balance the covariates between the treatment and 

comparison groups, more so than maximizing predictive power. 

Another strategy for propensity score model specification involves beginning with a 

minimum model specification and adding blocks of potentially relevant variables, and then 

checking whether the goodness of fit of the model improves with each addition. Black and Smith 

(2004) use the root mean squared error criterion to assess goodness of fit with additions to the 

model, although one can also examine the standard errors of the variables and other criteria. A 

potential problem with this approach is that a smaller number of conditioning variables is less 

likely to contribute to problems in satisfying the common support condition, which in turn results 

in a narrower bandwidth that reduces bias. Thus, as Black and Smith note, one might be led to a 

more parsimonious specification that performs better by these criteria but leaves out variables 
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that are important (based on theory and other empirical evidence) in controlling for selection. 

Clearly, the results of this type of specification test need to be taken into account with the other 

guidelines above for specifying the propensity score model. 

It is important to mention that all of these approaches need to be informed by sound 

theory to decide which variables are relevant to characterize the participation model. 

6.2. Balancing Tests 

The next step in assessing the quality of matching is to perform tests that check whether the 

propensity score adequately balances characteristics between the treatment and comparison 

group units. Formally, the objective of these tests is to verify that treatment is independent of 

unit characteristics after conditioning on observed characteristics (as estimated in the propensity 

score model): 

D⊥X | p X( )  

where X is the set of characteristics that are believed to satisfy the conditional 

independence assumption. In other words, after conditioning on p(X), there should be no other 

variable that could be added to the conditioning set of the propensity score models that would 

improve the estimation, and after the application of matching, there should be no statistically 

significant differences between covariate means of the treatment and comparison units. It is 

important to note that only “after-matching” tests compare differences in time-invariant 

covariates (that are unaffected by treatment) for the resulting matched sample. 

In examining the results of after-matching balancing tests, one looks to see that any 

differences in the covariate means between the two groups in the matched sample have been 

eliminated, which should increase the likelihood of unbiased treatment effects. If differences 

remain, refinements to the propensity score model specification should be made to improve the 

resulting balance, or a different matching approach should be considered. See Box 10 for an 

application of balancing tests. 
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Box 10: Checking the Balancing between Groups 

Following the case of PROMSA from boxes 6 and 8, Maffioli et al. (2009) run t-tests of 

equality of means before and after the matching to evaluate if the PSM succeeds in balancing 

the characteristics between treated and untreated groups. Table B.3 shows the difference in 

means for different variables before the matching, that is, using the full sample. 

 

Table B.3 Differences in Mean before Matching 

Variable Control Treated Difference 
Age 46.09 48.19 2.099 
 (11.24) (10.61) (.7214)*** 
Years of education 4.501 5.765 1.264 
 (3.41) (2.93) (.2061)*** 
Primary education 0.8374 0.8 -0.0374 
 (0.40) (0.37) (.0254)*** 
High school or more 0.108 0.1724 0.0643 
 (0.38) (0.31) (.0221)*** 
Born between 1930-1939 0.0226 0.0446 0.022 
 (0.21) (0.15) (.0110)** 
Born between 1940-1949 0.0711 0.1099 0.0387 
 (0.31) (0.26) (.0182)** 
Born between 1950-1959 0.467 0.4776 0.0105 
 (0.50) (0.50) (.0335)** 
Born between 1960-1969 0.3171 0.2336 -0.0834 
 (0.42) (0.47) (.0306)*** 
Born between 1970-1979 0.0658 0.103 0.0372 
 (0.30) (0.25) (.0176)** 
Born between 1980-1989 0.042 0.0206 -0.0214 
 (0.14) (0.20) (.0126)* 
Gender 0.8495 0.9078 0.0583 
 (0.29) (0.36) (.0229)** 
Indigenous 0.243 0.119 -0.124 
 (0.32) (0.43) (.0271)*** 

 
Standard errors in parentheses 
* Significant at 10%; ** significant at 5%; *** significant at 1%  
Source: Maffioli et al (2009) 

 



36 
 

 

There is clear evidence of covariate imbalance between groups. To avoid the biases that this 

may generate, the authors use the propensity score presented in Box 6 to define a matched 

control sample. The results from the tests of equality of means for the matched sample are 

shown in Table B.4. 

Table B.4 Differences in Mean after Matching 

Variable Control Treated Difference 
Age 48.11 48.44 0.3275 
 (10.56) (9.91) (0.840) 
Years of education 5.662 5.783 0.1219 
 (3.42) (2.92) (0.272) 
Primary education 0.8432 0.7979 -0.0452 
 (0.40) (0.37) (0.032) 
High school or more 0.1358 0.1742 0.0383 
 (0.38) (0.31) (0.030) 
Born between 1930-1939 0.0209 0.0418 0.0209 
 (0.20) (0.14) (0.015) 
Born between 1940-1949 0.1219 0.1114 -0.0104 
 (0.32) (0.25) (0.027) 
Born between 1950-1959 0.4947 0.4808 -0.0139 
 (0.50) (0.50) (0.042) 
Born between 1960-1969 0.2508 0.2299 -0.0209 
 (0.42) (0.47) (0.036) 
Born between 1970-1979 0.0975 0.1045 0.0069 
 (0.31) (0.25) (0.025) 
Born between 1980-1989 0.0139 0.0209 0.0069 
 (0.14) (0.20) (0.011) 
Gender 0.8954 0.9059 0.0104 
 (0.29) (0.36) (0.025) 
Indigenous 0.1289 0.1219 -0.0069 
 (0.33) (0.42) (0.028) 

 
Standard errors in parentheses 
* Significant at 10%; ** significant at 5%; *** significant at 1% 
Source: Maffioli et al (2009) 

 

Clearly, after matching, the differences are no longer statistically significant, suggesting 

that matching helps reduce the bias associated with observable characteristics. 

 



One can also calculate the standardized difference, that is, the size of the difference in 

means of a conditioning variable (between the treatment and comparison units), scaled by (or as 

a percentage of) the square root of the average of their sample variances.3 Still another option is 

to use an F-test or Hotelling test in a joint test for the equality of means between treatment and 

comparison units for all of the covariates (rather than testing for balance in each of the covariates 

separately). If the null hypothesis of joint equality of means in the matched sample is rejected, 

this implies that the propensity score model is inadequate to ensure balance. 

If these tests indicate that balance has not been achieved, and there is no other (available) 

variable that could be added to the model, another approach to improving the propensity score 

model performance in balancing the covariates is to modify the form of the variables in the 

model. For example, if there are large mean differences in an important covariate in the model 

between the treatment and comparison groups, one can add the square of the variable and/or 

interactions with other variables in reformulating the model. The estimation of the propensity 

score, matching procedure and balancing test would then be repeated to check for improvement 

in the balancing performance. This process could be repeated until balance is achieved. It is 

important to keep in mind, however, that in some cases, balance on the matched samples may not 

be possible, regardless of the amount of adjustment efforts made.  

It is also important to recognize that achieving balance for the full sample does not imply 

balance for the resulting matched sample that is used to estimate the treatment effect (which is 

checked in after-matching tests).  

If the units in a sample are classified into subsamples, propensity scores will be more 

similar within subclasses than in the full sample, and covariates will tend to be better balanced 

within the subclasses (as individuals being compared are more similar to each other). If 

stratification on the propensity score is performed, the check for balance within each stratum is 

done after the initial estimation of the propensity score but before examining outcomes; that is, it 

is a before-matching specification test. If the test results show important within-stratum 

differences, then the propensity score model specification needs to be revised, or there may be 

insufficient overlap in the covariate distributions to allow for subgroups. 

                                                 
3 Rosenbaum and Rubin (1985) suggest that a standardized difference of 20 or more should be viewed as large. 
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6.3. Verifying the Common Support Condition 

Another important step in investigating the validity or performance of the propensity score-

matching estimation is to verify the common support or overlap condition. We assume that the 

probability of participation in an intervention, conditional on observed characteristics, lies 

between 0 and 1 (implying participation is not perfectly predicted, that is, 0 < P D =1| X( ) <1). 

This assumption is critical to estimation, as it ensures that units with the same X values have a 

positive probability of being both participants and nonparticipants. 

Checking the overlap or region of common support between treatment and comparison 

groups can be done with relatively straightforward strategies. One obvious approach is through 

visual inspection of the propensity score distributions for both the treatment and comparison 

groups. Simple histograms or density-distribution plots of propensity scores for the two groups, 

along with a comparison of the minimum and maximum propensity score values in each 

distribution, can typically give the researcher a good, initial reading of the extent to which there 

is overlap in the propensity scores of the treatment and comparison units. See Box 11 for an 

example. 

 

 

Box 11: Visual Inspection of the Propensity Scores 

In addition to the mean equality tests presented in box 10, it is useful to plot the distributions of 

the propensity scores for treated and untreated groups to visually check the overlap condition 

and to see if the matching is able to make the distributions more similar. The distributions of 

the propensity scores, before and after the matching, for the case of PROMSA are plotted in 

figure B.2. 
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Figure B.2 Propensity Score Distribution 

 
Source: Maffioli et al (2009) 

Visual inspection suggests that the densities of the propensity scores are more similar after 

matching. The plot also reveals a clear overlapping of the distributions. 

To complement this informal analysis, more rigorous statistical tests like the 

Kolmogorov-Smirnov (KS) test (a way of testing the equality of two distributions) may be 

performed to confirm what visual inspection suggests. In this case, the KS test does not reject 

the null hypothesis of equality of distributions between groups after matching. 

If there are clear and sizeable differences in the minima and maxima of the propensity 

score density distributions for the treatment and comparison groups, one strategy for addressing 

this problem is to delete all observations where propensity score is smaller than the minimum 

and larger than the maximum in the other group. However, it is not always necessary to discard 

observations that are very close to these bounds (e.g., that might fit within a specified caliper for 

matching). 

39 
 



One also needs to look for areas within the common support interval (defined by the 

minima and maxima) where there is only limited (or no) overlap between the two groups. This is 

sometimes more common in the tails of the density distribution, suggesting that units most (or 

least) likely to participate in the intervention are very different from the large majority of cases. 

One may also observe substantial distance from the cases at the very tail of the distribution to the 

cases with the next largest (or smallest) propensity scores. 

A common strategy for addressing this problem is to trim the observations that fall 

outside the region of common support. It is important to note, however, that the subsequent 

estimation is only valid for the subpopulation within the common support. One can check the 

sensitivity of the propensity score estimation results to the exclusion of observations or their 

trimming from the sparser tails of the propensity score distributions. 
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7. Addressing Unobserved Heterogeneity: diff-in-diff matching 

In some cases, the conditional independence assumption is clearly not met because units are 

selected into an intervention on the basis of unmeasured characteristics that are expected to 

influence outcomes. The example from section II, where the more motivated teachers self-select 

into the program, clearly illustrates the point. Since motivation is typically not observable to the 

researcher, it cannot be introduced in the model, and thus, the matching estimator will be unable 

to isolate the impact of the treatment from the effect of the motivation. In fact, in the case of self-

selection, it is usually reasonable to think that unobserved variables (like ability, intelligence, 

motivation, risk aversion) may critically determine the participation model. Unfortunately, we 

know from previous sections that the usual matching estimator may be seriously biased in case 

of selection-on-unobservables. 

However, if pretreatment data are available, the strong Conditional Independence 

Assumption may be relaxed. More precisely, under the assumption that unobserved variables are 

time-invariant (that is, their value does not change with time), the effect can be cancelled out by 

taking the difference in outcomes before and after the program. 

The implementation of the difference-in-differences (or diff-in-diff) matching estimator is 

very similar to the cross-sectional version, except that outcome is measured in changes (between 

the pretreatment and post-treatment periods) instead of in levels. For treated cases, the dependent 

variable is the difference between outcomes in a period following participation and prior to 

participation, and for comparison cases, the outcome difference is calculated over the same 

periods. Even if participating units differ in important ways from those in the comparison group, 

so long as such differences are stable over time in their influence on outcomes, this specification 

can eliminate bias resulting from differences between participants and nonparticipants. Letting t 

and t’ represent the pretreatment and post-treatment periods, respectively, the outcome for 

individual i will be: 

ΔYi =Yit ′ −Yit  

Note how this specification allows us to relax the CIA (Conditional Independence 

Assumption): the counterfactual outcome of the treated individuals is allowed to differ from the 

observed outcome of the untreated, as long as their trend is the same. In technical terms:  
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E Y0 t ′ −Y0 t | D =1, X( )= E Y0 t ′ −Y0 t | D = 0, X( )forX ∈ S  

where S is defined as the overlapping support among the treatment and comparison 

groups. In other words, even if treated units differ in important ways from comparison units, as 

long as such differences are stable over time in their impact on outcomes, this specification can 

eliminate bias resulting from differences between treated and untreated units (i.e., it allows for 

unobserved heterogeneity). 

The diff-in-diff matching estimator is simply implemented by calculating the propensity 

score on the baseline year and applying the steps described above to the differenced outcome. 

It is worth noting that it may still be important to control for unit characteristics (X) that 

do not change over time. For example, if individuals with higher levels of education experience 

greater growth over time in earnings, it may be necessary to match individuals with the same 

levels of education. Only if the change in outcomes is not associated with a particular 

characteristic is it appropriate to omit that measure. 

Despite the benefits of difference-in-differences estimates, depending on the processes 

underlying the dynamics of program participation and outcomes, estimates may have biases that 

are not present in cross-sectional matching. If prior outcomes incorporate transitory shocks that 

differ for treatment and comparison units, since difference-in-differences estimation interprets 

such shocks as representing stable differences, estimates will contain a transitory component that 

does not represent the true program effect. More generally, the difference-in-differences 

estimates need to be understood as one of several estimates that rely on different assumptions. 

Finally, another source of heterogeneity in effects may arise from different dosages of the 

treatment, which are neglected in models that record treatment (or participation) with a binary 

variable. If individuals or other units of analysis receive different levels of treatment that are 

influential in determining outcomes, an alternative matching technique, the generalized 

propensity score (GPS), can be applied to estimate the effects of different lengths of exposure to 

treatment on outcomes. Appendix 1 provides additional details on this matching estimation 

technique. 
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8. Conclusion 

Propensity-score matching is one of the most commonly used techniques for dealing with biases 

associated with observable factors when evaluating the impact of a program. In this document, 

we have described the main issues to consider when implementing this methodology, which can 

be summarized in the following three steps: 

1.  The participation model must be characterized and the probability of participation 

predicted. A key objective of this step is to include variables that are likely to affect both 

the participation and the outcome of interest so that, conditional on these measured 

variables, there are no unmeasured factors affecting either participation or the relevant 

nonparticipation outcome. These covariates are used to estimate the propensity score with 

a probit or logit model. 

2.  Treated units are matched to similar untreated units based on the proximity of their 

propensity scores. At this point, a matching algorithm has to be chosen among the 

different alternatives (nearest neighbor, radius, kernel, etc.) considering data issues (such 

as sample sizes) and the bias/efficiency trade-off. 

3.  Once each treated unit has been matched with one or more untreated units, the impact of 

the program is estimated as a weighted average of the difference in outcomes between 

treated and untreated. These results need to be complemented with evidence of covariate 

balancing between groups and robustness checks. 

Perhaps the most important issue to understand when implementing PSM is in which 

contexts it is more likely to work. As mentioned, PSM requires two main conditions to correctly 

estimate the impact of a program. The first, the Conditional Independence Assumption (or 

selection-on-observables condition), holds when assignment to treatment is determined only by 

observable characteristics. If participation is likely to be driven by factors that are not observable 

to the researcher, the matching estimator may be seriously biased. However, in presence of 

pretreatment information, a modified version, the difference-in-differences matching estimator, 

may be applied to correct for some of this bias, as long as the effect of unobserved factors is 

fixed over time. 

The second assumption, known as the Common Support or Overlap Condition, requires 

the existence of a substantial overlap between the propensity scores of treated and untreated 
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units. If this assumption does not hold, it is impossible to construct a counterfactual to estimate 

the impact of the program. 

It is crucial, therefore, to carefully evaluate if these two conditions are met before 

implementing the approach described in this document. At this point, a solid understanding of 

the program and a sound theoretical basis are essential to defining whether the PSM 

methodology is an appropriate technique to estimate the impact of interest. 
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Appendix 1: Some Technical Aspects of PSM 

The theoretical basis of the Propensity Score-Matching method lies in the results derived by 

Rosenbaum and Rubin (1983). The main idea can be summarized using the following theorems 

(see Rosenbaum and Rubin, 1983 for further details). 

Theorem 1: the Propensity Score p X( ) = P D =1 | X( ) is a balancing score, 

X⊥D | p X( ) 

Theorem 2: if the Conditional Independence Assumption (CIA) holds, then the potential 

outcomes are independent of the treatment status, conditional on the propensity score p X( ) 

Y1,Y0( )⊥D | X ⇒ Y1,Y0( )⊥D | p X( ) 

In other words, the first theorem states, roughly, that the characteristics between two 

groups with the same propensity score value will be balanced. The second theorem implies that 

conditioning on the propensity score is equivalent to conditioning on the full vector X, as long as 

this vector contains all the relevant information to satisfy the CIA. Then, rather than attempting 

to match on all values of X, cases can be compared on the basis of propensity scores alone.  

The average treatment effect on the treated (ATT) can be estimated using these results. 

More precisely, recall that the ATT is: 

ATT = E Y1 | D =1( )− E Y0 | D =1( ) 

The CIA implies 

E Y0 | D =1, X( )− E Y0 | D = 0, X( ) 

And using theorem 2, 

E Y0 | D = 0, X( )− E Y0 | D = 0, p X( )( ) 

Combining these results, the Law of Iterated Expectations can be used to show that 

ATT = E Y1 | D =1( )− E Y0 | D =1( ) 
                                            = E p x( ) |D=1 E Y1 | D =1, p X( )( )− E Y0 | D = 0, p X( )( )[ ] 
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Note that, when estimating the ATT, the CIA assumption can be relaxed to: 

Y0⊥D | X  

since we need only to construct the counterfactual for the treated individuals. In practice, 

the matching estimator takes the form: 

 

where NT is the number of treated individuals, I1 and I0 are the sets containing treated and 

untreated individuals respectively, Sp is the common support and ω ij  is a weight assigned to each 

untreated individual based on the propensity score (its exact shape depends on the matching 

algorithm). 

Standard Error Estimation 

Abadie and Imbens (2008), Imbens and Wooldridge (2009), and Imbens (2008) recommend the 

use of an analytical formula for calculating standard errors that is asymptotically correct. Abadie 

and Imbens (2006) show that for matching estimates using a fixed number of matches, bootstrap 

standard errors are asymptotically biased. However, there is no work indicating whether 

bootstrap standard errors for radius-matching methods are consistent (see Imbens and 

Wooldridge, 2009). 

 The alternative approach recommended by Imbens and Woodridge (2009) and Imbens 

(2008) produces a conditional standard error, which provides an estimate of the variation in an 

impact estimate, conditional on the independent variables. Abadie and Imbens (2008) suggest an 

approach for estimating the unconditional standard error, which provides an estimate of the 

variation in the impact estimate that would result if the sample were chosen repeatedly from the 

full universe, with values on independent variables varying from sample to sample. The true 

value of the unconditional standard error must exceed the conditional standard error, but there is 

no certainty this will be the case for the estimates obtained in any one sample. Both approaches 

are somewhat involved and require the use of a matching algorithm that is as computer-intensive 

as that required to obtain program-impact estimates. 
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Generalizing the Propensity Score: Multiple Treatments and Dosage Effects 

In cases where the treatment consists of multiple alternatives, a multinomial first-stage model 

may be estimated. The multinomial logit model imposes stronger assumptions than the 

multinomial probit model, although the multinomial probit is also more computationally 

intensive. Another option is to estimate a series of binomial models (see Lechner, 2001), where 

only two treatment options are considered at one time. This increases substantially the number of 

models to be estimated, and the results of each estimation apply only to the two selected groups. 

Lechner (2001) did not find significant differences in the performance of the multinomial probit 

approach and estimation of a series of models. 

In many impact evaluations, treatment (or participation) is recorded with a binary 

variable equal to one if participation occurs and zero if no treatment is received. An important 

limitation of this approach to estimation is that it does not allow for exploration of the effects of 

differing levels of exposure to treatment, particularly in voluntary interventions where varying 

length of participation is a common feature. If individuals or other units of analysis receive 

different levels of treatment, then the average treatment effect estimated by conventional 

estimators is unlikely to capture the heterogeneity in effects arising from different dosages of the 

treatment. In other words, to the extent that exposure to treatment is influential in determining 

outcomes, the standard propensity score-matching approach to estimation may produce 

information that is of limited use to program/intervention designers. 

In recent years, a new matching technique for evaluating interventions in multitreatment 

settings, the generalized propensity score (GPS), has been developed to estimate the causal 

effects of different lengths of exposure to treatment on outcomes. Similar to the 

unconfoundedness assumption made in PSM, the GPS approach assumes that selection into 

levels of the treatment is random, conditional on a set of rich observable characteristics. In this 

case, the level of participation is independent of the outcome that would occur in the absence of 

participation. If the model assumptions are satisfied, it is possible to use GPS to estimate the 

average treatment effects of receiving different levels of exposure to the treatment or 

intervention, thereby allowing for the construction of a “dose-response function” that shows how 

treatment exposure relates to outcomes. 

The notation for GPS has been formalized by Hirano and Imbens (2004). They define 

Yi(t) as the set of potential outcomes of a treatment   t ∈T , where   T may be an interval of a 
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continuous treatment. For each unit i, we observe a vector of covariates Xi (that predict take-up 

of the treatment); the level of the treatment, Ti, that unit i actually receives, and the potential 

outcome associated with the level of treatment received, Yi = Yi(t). 

The (weak) unconfoundedness assumption states that, conditional on observed covariates, 

the level of treatment received (Ti) is independent of the potential outcome  

Yi t( )⊥Ti | Xi             ∀t ∈T  

In other words, we assume there is no systematic selection into levels of treatment based 

on unobservable characteristics. 

The density function of the treatment conditional on pretreatment covariates is: 

r t,x( ) = fT |X t | x( ) 

and the GPS is therefore defined as the conditional density of receiving a particular level 

of the treatment, t = T: 

R = r T , X( ) 

Similar to the binary treatment (PSM) case, the GPS balances the covariates within strata 

defined by values of the GPS, so that the probability that t=T does not depend on the value of X 

(and assignment to treatment levels is unconfounded). 

As Hirano and Imbens (2004) show, this allows the estimation of the average dose-

response function, μ t( ) = E Yi t( )[ ] using the GPS to remove selection bias.  

After estimating the GPS, the next step is to estimate the conditional expectation of the 

outcome (Yi) as a function of the treatment level, T, and the GPS, R: 

β t,r( ) = E Y | T = t,R = r[ ] 

The regression function β t,r( )  represents the average potential outcome for the strata defined by 

, but it does not facilitate causal comparisons across different levels of treatment. 

That is, one cannot directly compare outcome values for different treatment levels to obtain the 

causal difference in the outcome of receiving one treatment level versus another. 

r T , X( ) = R

A second step is required to estimate the dose-response function at each particular level 

of the treatment. This is implemented by averaging the conditional means β t,r( ) over the 

distribution of the GPS, , i.e., for each level of the treatment: r t, X( )
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μ t( ) = E β t ,r t, X( )( )[ ] 

Where μ t( )  corresponds to the value of the dose-response function for treatment value t, and 

when compared to another treatment level, does have a causal interpretation. 

Implementation of GPS estimation 

Assuming a normal or lognormal distribution for the treatment, ordinary-least-squares (OLS) 

regression can be used to estimate the GPS, i.e., the conditional distribution of the treatment Ti 

given the covariates, Xi, that predict selection into levels of the treatment. It is also possible to 

assume other distributions and/or to estimate the GPS by other methods such as maximum 

likelihood. 

Next, the conditional expectation of the outcome given the observed treatment level (Ti) 

and the estimated GPS (e.g., Ri) is modeled with a flexible linear specification (such as OLS). 

Hirano and Imbens (2004) recommend a quadratic approximation, such as the following: 

E Yi | Ti ,Ri[ ]=α0 +α1Ti +α2Ti
2 +α3Ri +α4 Ri

2 +α2Ti .Ri  

In the third step, the value of the dose-response function at treatment level t is estimated by 

averaging the regression function (from step two above) over the distribution of the GPS 

(holding constant the treatment level t). Bootstrap methods can be used to obtain standard errors 

that take into account estimation of the GPS and regression parameters α0  to α5 . 

As in PSM, it is also important to assess the balance of the covariates following GPS 

estimation. One approach suggested by Imai and van Dijk (2004) is to check the balance of each 

covariate by running a regression of each covariate on the log of the treatment and the GPS; if 

the covariate is balanced, then the treatment variable should have no predictive power, 

conditional on the GPS. A comparison of this coefficient to the corresponding coefficient of a 

regression that does not include the GPS can be used to assess how well the GPS performs in 

balancing. 

In an alternative approach to assessing balance, Agüero, Carter and Woolard (2007) 

defined three different treatment terciles of the treatment variable and tested whether the mean 

value of the covariates were the same for the observations in the different treatment terciles. 

They then investigated whether the covariates were better balanced after conditioning on the 

estimated GPS. For each treatment tercile, they first calculated the estimated probability that 
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each observation might have received the median treatment level for the tercile. In other words, 

letting dt denote the median treatment level received in tercile t, they calculated r(dt,Xi) for each 

observation. They then separated the observations into five quintiles, and for each GPS quintile 

block, they tested whether the means of the covariates for the observations that actually received 

low treatment were different from the means for those that did not receive low treatment. If the 

GPS successfully balanced the covariates, low and not-low treatment groups would look similar 

after conditioning on the GPS. 

Checking for sufficient overlap in the distribution of covariates across different levels of 

the treatment is likewise important, although it is substantially more difficult in the multi-valued 

or continuous treatment case, given the many levels of treatment and multiple parameters of 

interest that may require different support conditions. 

Flores-Lagunes, Gonzalez and Neumann (2007) developed an approach to informally 

assess overlap in the supports of different levels of treatment in their study of youth exposure to 

a job-training intervention. They began by dividing values of the treatment-exposure measure 

into five quintiles. For each quintile, they computed the value of the GPS for each unit (youth) at 

the median level of the treatment for the quintile. They then computed the value of the GPS at 

the same median level of treatment for all individuals that were not part of that particular 

quintile. They subsequently compared the supports of the values of the GPS for these groups 

(individuals in the quintile of focus with those of the other quintiles) by examining 

(superimposing) their histograms. This was repeated in turn for each quintile, generating plots 

for each of the comparisons. 
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Appendix 2: Software for Implementing PSM 

Below we summarize information on the most commonly used software programs for 

propensity-score matching. This list of available programs and publications is adapted from a 

web page maintained by Elizabeth Stuart: 

http://www.biostat.jhsph.edu/~estuart/propensityscoresoftware.html 

In addition, although there are currently no procedures or macros from the SAS Institute 

specifically designed to match observations using propensity scores, papers presented at an SAS 

Global Forum (and listed below) offer some macros that may be employed. 

Stata  

psmatch2 http://ideas.repec.org/c/boc/bocode/s432001.html  

• Leuven, E., and B. Sianesi. 2003. “PSMATCH2: Stata Module to Perform Full 

Mahalanobis and Propensity-Score Matching, Common Support Graphing, and Covariate 

Imbalance Testing”. Statistical Software Components S432001(revised 02 May 2009). 

Newton, MA, United States: Boston College Department of Economics. 

• Allows k:1 matching, kernel weighting, Mahalanobis matching  

• Includes built-in diagnostics  

• Includes procedures for estimating ATT or ATE  

pscore http://www.lrz-muenchen.de/~sobecker/pscore.html  

• Becker, S.O. and A. Ichino. 2002. “Estimation of Average Treatment Effects Based on 

Propensity Score”. The Stata Journal 2(4): 358-377.  

• k:1 matching, radius (caliper) matching, and stratification (subclassification)  

• For estimating the ATT  

match http://www.economics.harvard.edu/faculty/imbens/software_imbens  

• Abadie, A., D. Drukker, J.L. Herr, and G. Imbens. 2004. “Implementing Matching 

Estimators for Average Treatment effects in Stata”. The Stata Journal 4(3): 290-311.  

• Primarily k:1 matching (with replacement)  
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• Allows estimation of ATT or ATE, including robust variance estimators  

cem http://gking.harvard.edu/cem/  

• Iacus, S.M., G. King, and G. Porro. 2008. “Matching for Causal Inference without 

Balance Checking”.  

• Implements coarsened exact matching  

R  

Matching http://sekhon.berkeley.edu/matching  

• Sekhon, J. S. (in press). “Matching: Multivariate and Propensity-Score Matching with 

Balance Optimization”. Forthcoming, Journal of Statistical Software.  

• Uses automated procedure to select matches, based on univariate and multivariate 

balance diagnostics  

• Primarily 1:M matching (where M is a positive integer), allows matching with or without 

replacement, caliper, exact  

• Includes built-in effect and variance estimation procedures  

MatchIt http://gking.harvard.edu/matchit  

• Ho, D.E., K. Imai, G. King, and E.A. Stuart. (In press). “MatchIt: Nonparametric 

Preprocessing for Parametric Causal Inference”. Forthcoming, Journal of Statistical 

Software.  

• Two-step process: does matching, then user does outcome analysis (integrated with Zelig 

package for R)  

• Wide array of estimation procedures and matching methods available: nearest neighbor, 

Mahalanobis, caliper, exact, full, optimal, subclassification  

• Built-in numeric and graphical diagnostics  
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cem http://gking.harvard.edu/cem/  

• Iacus, S.M., G. King, and G. Porro. 2008. “Matching for Causal Inference Without 

Balance Checking”.  

• Implements coarsened exact matching  

• Can also be implemented through MatchIt  

optmatch http://cran.r-project.org/web/packages/optmatch/index.html  

• Hansen, B.B., and M. Fredrickson. 2009. “Optmatch: Functions for Optimal Matching”.  

• Variable ratio, optimal, and full matching  

• Can also be implemented through MatchIt  

PSAgraphics http://cran.r-project.org/web/packages/PSAgraphics/index.html  

• Helmreich, J.E., and R.M. Pruzek. 2009. “PSAgraphics: An R Package to Support 

Propensity Score Analysis”. Journal of Statistical Software 29(6).  

• Functions that primarily produce graphics to test balance within strata of categorical and 

quantitative covariates, represent estimated effect size by stratum, and various balance 

functions that provide measures of the balance achieved.  

SAS  

SAS usage note: http://support.sas.com/kb/30/971.html  

Greedy matching (1:1 nearest neighbor)  

• Parsons, Lori S. 2001. “Reducing Bias in a Propensity Score Matched-Pair Sample Using 

Greedy Matching Techniques”. SAS SUGI 26, Paper 214-26.  

• Parsons, Lori S. 2005. “Using SAS® Software to Perform a Case-Control Match on 

Propensity Score in an Observational Study”. SAS SUGI 30, Paper 225-25. 

http://gking.harvard.edu/cem/
http://gking.harvard.edu/matchit
http://cran.r-project.org/web/packages/optmatch/index.html
http://gking.harvard.edu/matchit
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http://support.sas.com/kb/30/971.html
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