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Abstract 

Teachers vary considerably in their effectiveness, but identifying teacher 

characteristics that predict their impact on learning outcomes has been elusive. We 

analyze a teacher evaluation that is used to make teacher tenure decisions in 

Ecuador. The evaluation includes a written test, a demonstration class, and a points 

system that gives higher scores to teachers with more experience, degrees, and in-

service training. We find no evidence that children taught by teachers with higher 

scores on the evaluation learn more. Our estimates are very precise: We can rule 

out that teachers with one-standard deviation higher evaluation scores raise child 

test scores in math by 0.03 standard deviations or more, and language scores by 

0.02 standard deviations or more. We conclude that the effort that is being placed 

by policy-makers in Latin America to design and “improve” teacher tests is unlikely 

to result in large improvements in child learning. 

JEL Codes: I25, I28 
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1. Introduction 

It is generally believed that teachers are the most important input into the production of learning 

within schools. Having a better teacher has long-term consequences for a variety of outcomes in 

adulthood, including college attendance, savings, and wages (Chetty et al. 2011; Chetty et al. 

2014a). Research from the United States has credibly established that teachers—even teachers in 

the same school, teaching observationally equivalent students—vary a great deal in their 

effectiveness (Chetty et al. 2014b; Hanushek and Rivkin 2012). However, knowing that some 

teachers produce more learning than others provides no guidance on the attributes of effective 

teachers.  

In this note, we analyze whether an evaluation that is used to determine which teachers 

receive tenure predicts student learning in Ecuador, a middle-income country in South America. 

In earlier work (Araujo et al. 2016), we showed that kindergarten teachers varied in the impact 

they have on learning: A one standard deviation increase in classroom quality increased test scores 

in math and language by 0.11 standard deviations.  

In Ecuador, about one in three teachers in the public sector work on a contract basis. 

Tenured teachers are paid substantially more than contract teachers, and have more generous 

health insurance and pension benefits. Being converted from a contract to a tenured teacher 

therefore has important benefits for the individual, and implies increases in costs for the Ministry 

of Education.  

Every year the Ministry carries out a planning exercise that takes account of the current 

distribution of tenured teachers, student population and the projected growth in demand, and any 

projected school openings, closings or merges. Based on this exercise, additional tenured slots are 

assigned to some schools. These slots are school-specific, but any individual who has a teaching 

degree from an accredited institution can apply. Among eligible applicants to a new slot, the 

applicant with the highest total score on an evaluation known as the Concurso de Méritos y 

Oposiciones (henceforth, Concurso) is awarded the tenured position. 

The Concurso has three components, each of which receives equal weight in an aggregate 

score. The first component is given by a teacher’s score on a test. This test has three parts: logical-

verbal reasoning, pedagogical knowledge, and subject-specific knowledge. The second component 

of the aggregate score is a teacher’s score on a demonstration class. The third component of the 

aggregate Concurso score is given by a point system (Méritos) which gives higher scores to 
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teachers with more experience, degrees (above and beyond the basic teaching certificate), and in-

service training.  

We use data on a sample of children in 2nd, 3rd, and 4th grades to analyze whether children 

taught by teachers with higher scores on the Concurso have higher achievement in language and 

math. Our earlier work (Araujo et al. 2016) was based on a sample of kindergarten children 

randomly assigned to teachers within schools. The data used for the analysis in this paper do not 

come from an experiment. We therefore have to make stronger identifying assumptions. In 

practice, we use a school fixed effects strategy that compares the test scores of observationally 

equivalent children taught by teachers with higher or lower Concurso scores in the same school.  

 

2. Data and identification 

Our sample consists of 4,479 children taught by 480 teachers in 240 schools. Schools were selected 

so each would have at least two contract teachers in 2nd through 4th grades who had taken the 

Concurso evaluation. Within each classroom, 9-10 children were randomly selected for testing. 

Twenty-eight percent of the children in the sample are in 2nd grade, 38 percent in 3rd grade, and 35 

percent in 4th grade. To ease with interpretation, we standardize teacher scores on the Concurso 

and its components to have mean zero and unit standard deviation. 

Children were tested twice, midway through the school year, and shortly before the end. 

We used adapted versions of the Early Grade Reading Assessment (EGRA; RTI International 

2009; Gove and Cvelich 2011), and Early Grade Math Assessment (EGMA; Reubens 2009). Both 

tests have been applied in more than 20 developing countries. Application takes about 30 minutes 

per child. We standardize the four tests (EGRA and EGMA, mid- and end-year) so they have mean 

zero and unit standard deviation in each grade. 

For 3,346 children in the sample (74.7 percent), we also have data from a household survey. 

This survey includes information on the years of completed schooling of mothers and fathers; 

whether a child attended preschool; and information on a large number of household characteristics 

(such as the material of the floors, wall, and ceilings in the house; whether the house is connected 

to the electricity, water, and sewerage system), and ownership of assets (questions for 23 assets). 

We aggregate the information on household characteristics and assets into a wealth composite 

(following, among many others, Araujo et al. 2016, and Paxson and Schady 2007, 2010, who also 

work with data from Ecuador). 
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The regressions we estimate take the following form: 

(1) Yitgs = θg + αs + β1Tgs + β2Xitgs + εitgs,  Z=1, 2, … N 

where the subscripts i, t, g, and s refer to individuals, teachers, grades, and schools, respectively; 

θg is a set of grade fixed effects; αs is a set of school fixed effects; Tgs is the score of a teacher on 

the Concurso or its components; Xitgs always includes controls for child age in months, gender, 

and classroom size and, in some specifications, the education of mothers and fathers, household 

wealth, and an indicator variable for whether a child attended preschool; εitgs is the regression error 

term; and the regressions are run for z different tests (the mid- and end-year scores on EGRA or 

EGMA, and the change in scores between mid- and end-year). The coefficient of interest is β1, an 

estimate of the extent to which children taught by teachers with higher scores on the Concurso 

have better scores in math or language. Standard errors are corrected for clustering at the school 

level. 

The main estimation concern is purposeful sorting of children to teachers. As a check on 

our identification strategy, we run regressions of the variables in Tgs on the variables in Xitgs. Since 

the variables in Xitgs are predetermined, any indication that teachers with higher (or lower) test 

scores on the Concurso were assigned to children with different characteristics would raise 

questions about our identification strategy. Table 1 finds no evidence that this is the case, 

regardless whether the variables in Xitgs are entered one at a time or jointly. We conclude that our 

identification strategy is reasonable. 

 

3. Results 

To put things in context, we first regress the change in math or language test scores between mid- 

and end-year on the full set of child and household controls. We take the residuals from these 

regressions, calculate classroom means, and the difference in means between classrooms in the 

same school. Within-school differences are large: The median difference is .18 standard deviations 

for language, and .22 standard deviations for math. Although some of these within-school, cross-

classroom differences are probably driven by sampling error or idiosyncratic classroom shocks, it 

seems likely that a substantial proportion reflect true differences in the quality of teachers.2  

                                                
2 In Araujo et al. (2016) and Carneiro et al. (2017) we use an Empirical Bayes estimator to shrink the estimated 

classroom effects. On average, the corrected estimates are about one-third smaller than those that do not correct for 

sampling error. We do not do this in the current paper because we are not calculating classroom (or teacher) effects. 
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 Next, we show that the characteristics in Xitgs tend to be strongly correlated with test scores, 

as expected. Table 2 shows that girls score about 0.14 standard deviations higher on language, and 

0.23 standard deviations lower in math.3 Children from households of higher socioeconomic status 

have higher test scores in both reading and math. 

Our main findings are in Table 3. We report the results from specifications with the 

additional controls (even-numbered columns) and without (odd-numbered columns), and six 

different dependent variables: the mid- and end-year test scores in language and math, and the 

change in test scores between mid- and end-year.4  

Table 3 shows no evidence that the test score or any of its components, the score on the 

demonstration class, points on the Méritos scale, or the aggregate score on the Concurso predict 

child achievement in language or math. There are 84 coefficients in the table, and about one-half 

(40) are positive and one-half (44) are negative. No coefficient is significant at conventional levels. 

The estimates in the table are quite precise. For example, in the specifications with the additional 

controls, we can rule out positive associations between the total Concurso score and child test 

scores larger than 0.02 standard deviations for language, and 0.03 standard deviations for math. 

Consistent with the results in Table 1, the coefficients with and without the additional controls are 

very similar.  

 In sum, although there are large differences across classrooms in the same school in how 

much children learn, there is no evidence that children taught by teachers with better Concurso 

scores are more effective. If teachers with better scores were systematically assigned students with 

lower learning potential, our results could be biased towards zero. We find no evidence that this is 

the case. We conclude that the evaluation that was used to make tenure decisions in Ecuador did 

not predict how effective teachers were at increasing the language and math test scores of children 

in elementary school.   

  

                                                
3 Carneiro et al. (2017) carefully analyze the gender gap in math achievement in kindergarten through 2nd grade in 

Ecuador. Consistent with what we report here, they find a gender gap of 0.17 standard deviations, favoring boys, by 

2nd grade.    
4 Results are very similar if instead we use the largest possible sample of children and do not include the additional 

controls. These results are available from the authors upon request. 
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4. Discussion and conclusion  

Improving the quality of education is an important priority for Latin American countries. Teachers 

vary considerably in their effectiveness and many Latin American children are taught by low-

quality teachers (Bruns and Luque 2015). The region has low productivity, much of which can be 

traced to the low skills of the workforce (Pages 2010). Some analysts have argued that the low 

learning outcomes of Latin American students (and eventually adults) can account for much of the 

difference in growth rates between Latin America and East Asia (Hanushek and Woessman 2012). 

 Research from the United States has generally been pessimistic about the ability of various 

tests to identify better teachers (Hanushek and Rivkin 2006; Staiger and Rockoff 2010). We 

carefully analyze a teacher evaluation that included a written test, a demonstration class, and points 

for experience, degrees, and in-service training. Earlier work (Araujo et al. 2016) shows that 

teachers in Ecuador vary considerably in the impact they have on learning outcomes. In this note 

we show, however, that the instrument that is used to decide which teachers get tenure in 

Ecuador—an instrument similar to that used in many other Latin American countries—does not 

predict how effective a teacher is at raising math and language achievement.5 Our estimates are 

quite precise and we can rule out even very modest effects on test scores. The results in our paper, 

and others in the literature, lead us to be cautious about what one can, and cannot, expect from a 

teacher testing regime like those that have become popular in many developing countries.6  

                                                
5 Many countries in Latin America, including Chile, Colombia, El Salvador, Mexico, Peru, and some municipalities 

and states in Brazil, test teachers. The tests generally include a written component and a demonstration class. 

Performance on this teacher evaluation is an input into decisions about hiring, tenure, in-service training, pay and, in 

some countries (like Chile), which teachers can get fired.  
6 An influential report on teachers in Latin America concludes that “mandatory certification exams are the most 

powerful instrument for raising teacher standards” (Bruns and Luque 2015, p. 31). Our results are not consistent with 

this assertion. 
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Table 1: Associations between teacher scores on the Concurso and predetermined child and household characteristics 

 CHILD OR HOUSEHOLD CHARACTERISTIC  

 

TEACHER SCORE 

Age 

(months) 

(1) 

Female 

 

(2) 

Class 

Size 

(3) 

Mother 

Schooling 

(4) 

Father 

Schooling 

(5) 

Wealth 

 

(6) 

Attended 

Preschool 

(7) 

F-test 

Prob > F 

(8) 

Test score: aggregate score .002 

(.004) 

-.014 

(.018) 

-.008 

(.015) 

.001 

(.003) 

.003 

(.003) 

-.026 

(.024) 

-.027 

(.040) 

0.31 

    Test score: verbal-logical reasoning -.004 

(.004) 

.008 

(.021) 

-.008 

(.016) 

.004 

(.003) 

.005 

(.003) 

-.010 

(.019) 

.025 

(.036) 

0.50 

    Test-score: pedagogical practices  -.004 

(.005) 

-.009 

(.016) 

-.006 

(.013) 

.002 

(.003) 

-.001 

(.003) 

-.020 

(.032) 

.022 

(.044) 

0.93 

    Test score: content .003 

(.004) 

-.027    

(.023) 

-.005    

(.018) 

-.003 

(.003) 

.003 

(.004) 

-.027 

(.017) 

.103** 

(.041) 

0.07 

Demonstration class -.000 

(.004) 

.019 

(.031) 

-.004 

(.013) 

.009** 

(.004) 

.006 

(.004) 

.033 

(.024) 

.023 

(.043) 

0.13 

Points on Méritos scale .002 

(.003) 

-.023 

(.020) 

-.008 

(.014) 

.003 

(.003) 

-.002 

(.003) 

.014 

(.017) 

-.011 

(.039) 

0.73 

Total Concurso score .002 

(.004) 

-.030 

(.024) 

.007 

(.014) 

.004 

(.004) 

.002 

(.003) 

.014 

(.017) 

-.010 

(.033) 

0.85 

Notes: Regressions of teacher scores on characteristics in columns (1) through (7), with each teacher score regressed on each child or household characteristic 

(49 separate regressions). F-test in column (8) refers to an F-test from a regression in which all the characteristics in columns (1) through (7) enter jointly. All 

regressions include school fixed effects. Teacher scores have been transformed to have mean zero and unit standard deviation. Sample size is 3,058 in every 

regression. Standard errors clustered at the school level. *, **, and *** indicate significance at the 10 percent, 5 percent, and 1 percent level, respectively. 
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Table 2: Associations between child and household characteristics, and child test scores 

 

  

 CHILD OR HOUSEHOLD CHARACTERISTIC 

 

CHILD TEST SCORE 

Age 

(months) 

(1) 

Female 

 

(2) 

Class 

Size 

(3) 

Mother 

Schooling 

(4) 

Father 

Schooling 

(5) 

Wealth 

 

(6) 

Attended 

Preschool 

(7) 

EGRA: mid-year .008** 

(.003) 

.141*** 

(.032) 

-.007 

(.006) 

.040*** 

(.004) 

.036*** 

(.005) 

.134*** 

(.024) 

.010 

(.045) 

EGRA: end-year .007** 

(.003) 

.135*** 

(.032) 

-.003 

(.006) 

.045*** 

(.004) 

.036*** 

(.005) 

.139*** 

(.024) 

.073* 

(.043) 

EGMA: mid-year -.004 

(.003) 

-.242***    

(.034) 

-.006    

(.005) 

.039*** 

(.005) 

.032*** 

(.005) 

.112*** 

(.027) 

-.003** 

(.045) 

EGMA: end-year -.002 

(.003) 

-.223*** 

(.033) 

-.002 

(.006) 

.043*** 

(.005) 

.030*** 

(.005) 

.132*** 

(.024) 

.078* 

(.047) 
Notes: Regressions of child test scores on characteristics in columns (1) through (7), with each child score regressed on each child or household 

characteristic (28 separate regressions). All regressions include school fixed effects. Child test scores have been transformed to have mean zero 

and unit standard deviation. Sample size is 3,322 in every regression. Standard errors clustered at the school level. *, **, and *** indicate 

significance at the 10 percent, 5 percent, and 1 percent level, respectively. 
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Table 3: Main results 

 TEACHER SCORE ON CONCURSO OR COMPONENTS 

  

Total test score 

Verbal-logical 

reasoning 

score 

 

Pedagogical 

practices score 

 

Content 

score 

 

Demonstration 

class 

 

Points on 

Méritos scale 

 

Total Concurso 

score 

CHILD TEST 

SCORE 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

EGRA: mid-year .020 

(.037) 

.018 

(.037) 

.040 

(.037) 

.032 

(.037) 

-.002 

(.029) 

-.002  

(.028) 

.014  

(.042) 

.014  

(.043) 

.002 

(.023) 

-.007  

(.023) 

-.021  

(.034) 

-.021  

(.034) 

.000  

(.030) 

-.005  

(.029) 

EGRA: end-year .021 

(.035) 

.020 

(.034) 

.030 

(.037) 

.023 

(.037) 

.000 

(.028) 

.000  

(.027) 

.020 

(.041) 

.021  

(.041) 

.013 

(.023) 

.003  

(.023) 

-.032 

(.033) 

-.033  

(.033) 

-.004  

(.029) 

-.010  

(.028) 

∆ EGRA score 

 

.001 

(.018) 

.001 

(.018) 

-.009 

(.016) 

-.010 

(.016) 

.003 

(.016) 

.002  

(.016) 

.006  

(.015) 

.008  

(.014) 

.011 

(.009) 

.010  

(.009) 

-.011  

(.015) 

-.011  

(.015) 

-.004  

(.012) 

-.004  

(.013) 

EGMA: mid-year -.046 

(.031) 

-.048    

(.031) 

-.026 

(.036) 

-.033    

(.036) 

-.042    

(.027) 

-.042  

(.027) 

-.026 

(.034) 

-.025 

(.034) 

.021    

(.025) 

.012  

(.024) 

.026 

(.029) 

.025 

(.029) 

-.003 

(.029) 

-.008 

(.027) 

EGMA: end-year -.046 

(.033) 

-.046 

(.033) 

-.056 

(.036) 

-.062 

(.037) 

-.022 

(.029) 

-.022  

(.030) 

-.027  

(.034) 

-.022  

(.034) 

.018 

(.022) 

.008  

(.021) 

.042  

(.031) 

.040  

(.030) 

-.012  

(.029) 

-.018  

(.027) 

∆ EGMA score 

 

-.000 

(.018) 

.002 

(.018) 

-.030 

(.020) 

-.030 

(.020) 

.021 

(.015) 

.020  

(.015) 

-.001  

(.017) 

.003  

(.017) 

-.002 

(.012) 

-.003  

(.012) 

.016  

(.018) 

.016  

(.018) 

-.009  

(.017) 

-.009  

(.017) 
Notes: Regressions of child test scores (mid-year, end-year, or changes between mid-year and end-year) on teacher scores on the Concurso or its components (84 separate 

regressions). All regressions include school fixed effects, class size, child age in months, and child gender. Specifications in even-numbered columns also include education of 

mothers, fathers, household wealth, and whether the child attended preschool. Child test scores and teacher scores on the Concurso have been transformed to have mean zero 

and unit standard deviation. Sample size is 3,058 in every regression. Standard errors clustered at the school level. *, **, and *** indicate significance at the 10 percent, 5 

percent, and 1 percent level, respectively. 


