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Abstract1 
 

This paper reports the results of an experiment with secondary school students 
designed to improve their ability to reason, argument, and communicate using 
mathematics. These goals are at the core of many educational reforms. A 
structured pedagogical intervention was created that fostered a more active role of 
students in the classroom. The intervention was implemented with high fidelity 
and was internally valid. Students in the control group learned significantly more 
than those who received treatment. A framework to interpret this result is 
provided in which learning is the result of student-teacher interaction. The quality 
of such interaction deteriorated during the intervention. 
 
JEL classifications: C93, I21, I28, O32 
Keywords: Education, Active learning, Curricular reform, Technology, Field 
experiments 
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1. Introduction 
 
Mathematical competence is a fundamental skill for personal fulfillment, active citizenship, 

social inclusion, and employability in the modern world. In this paper we report the results of an 

experiment devised to affect the way mathematics is taught and learned in Costa Rican 

secondary schools. The objective was to create a scalable intervention that would allow students 

to achieve mathematical competence. That is to say, students’ ability to think, reason, argument, 

and communicate using mathematics. This concept is prevalent in the design of PISA 

examinations (OECD, 2009) and in curricular reforms in many countries, including Costa Rica 

and the United States. 

Teaching strategies underpin all learning in the classroom. They determine what is 

learned and the nature of the interactions between students and teachers. As a recent study from 

the European Commission highlights (Eurydice, 2011), in order to achieve mathematical 

competence a common practice pursued by many countries is to give students a more active role 

in the generation of knowledge. “Moving away from the traditional teacher-dominated way of 

learning, active learning approaches encourage pupils to participate in their own learning through 

discussions, project work, practical exercises and other ways to help them reflect upon and 

explain their mathematics learning” (Eurydice, 2011: 56). 

We created a pedagogical intervention designed to give students a more active role in the 

learning of geometry—one of three units of the seventh grade curriculum, or about three months 

of teaching. A key aspect of this change relies on providing students with guided opportunities to 

explore and discover.  In mathematics, a potentially important lever in this process is the use of 

technology. 

We randomly assigned 85 participating schools to treatment and control groups. All 

students (18,000) and teachers (190) in the seventh grade of these schools participated in the 

experiment. Treatment schools received the active learning intervention. In addition, in order to 

assess the role of technology keeping constant the pedagogical approach, we randomized 

treatment schools to receive no technology, an interactive whiteboard, a computer lab, or a 

laptop for every child in the classroom. 

We commissioned the design of pedagogical material for this project to local experts 

advised by a team from a leading international education academic organization. In order to 

support teachers and students and with an eye directed at improving fidelity of implementation as 
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well, we created a teacher’s manual and a student’s workbook (one for every modality of the 

intervention but none for the control). Technology was introduced through a set of applets 

(created on a software familiar to Costa Rican teachers) designed to help students and teachers 

explore the key concepts of the unit.  

In coordination with our local partners, we ensured that all the new resources were in 

place at the time of the implementation and suitable technical support was provided to guarantee 

that all resources were functional during the experiment. Teachers received 40 hours of on-site 

and distance training with virtual support, achieving a 95 percent participation rate. All the 

teachers in treatment arms received a laptop computer and a manual. All the students in seventh 

grade (with the exception of the control group) received a workbook.  

In collaboration with local and international experts, we designed a psychometrically 

valid test of geometry to measure the impact of this intervention. The objective of the test was 

not only to measure the content knowledge of the students but also their mastery of higher-order 

geometric practices that require, for example, that students pick, compare, justify or refute 

conjectures and propositions. Before the start of the experiment we tested all the students in their 

general knowledge of sixth grade mathematics using a standardized international test prepared 

and administered under the supervision of UNESCO.  

Geometry learning was the target outcome of the experiment. However, with a complex 

intervention like this one, it is of equal importance to understand how we affected the behavior 

of students and teachers. Only by understanding these underlying mechanisms can we learn why 

the target outcome has changed. For this purpose, we collected teacher and student surveys that 

use scales validated in psychology and educational research to measure class dynamics, teaching 

practices, attitudes and beliefs. We also collected classroom observations to further attest to the 

changes reported by teachers and students. 

Randomization yielded groups with similar observable characteristics. The experiment 

was implemented with high fidelity. Materials and equipment were distributed where and when 

expected. They remained functional throughout the experiment. Teachers and students made use 

of their respective manuals. Indeed, there were significant changes in class dynamics with more 

participation from students. Teachers in the treatment arms were open to the innovations we 

introduced in the classroom. 
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Surprisingly, we find that the control group learned significantly more than any of the 

intervention groups. The students using only the active learning approach learned about 17 

percent less than the status quo. The loss in the group that also received technology was 25 

percent of a standard deviation. We also find that the best students were harmed the most by this 

intervention. Concurrently, their behavior deteriorated and they were less engaged with learning 

mathematics. The evidence suggests that teachers went through the motions as prescribed but did 

not master the innovation in a way that would have allowed students to benefit the most from it. 

The results of the experiment are not a fluke. This experiment was an example of a 

salient educational policy. It was internally valid and performed on a nationally representative 

sample of schools. The resources were deemed useful for classroom use by the teachers and they 

bought into the changes we proposed. The main outcome was a psychometrically valid measure 

of geometry knowledge.  

The intervention we study in this paper is shorter in duration than many programs that are 

evaluated in the education and economics literature.2 However, duration is only one of many 

factors that we should consider when designing and interpreting the results of an experiment. 

One of the key trade-offs in complex social experiments lies in balancing the length of the 

intervention with our ability to control the experimental conditions. In our case, we designed an 

evaluation with the objective of isolating whether a particular pedagogical reform (active 

learning) could be effective at raising student knowledge under ideal conditions (i.e., as close as 

possible to an efficacy trial). In order to isolate the main ingredient of this reform we attempted 

to control many more levers than would be possible under the business as usual conditions that 

characterize the evaluation of most educational reforms (i.e., efficiency trials). For example, the 

quality of the pedagogical team assembled, the hours devoted to work on the material by the 

team, the depth of the material, the quality and quantity of the technology resources and support 

available to the schools, and the length of training would be prohibitively costly to reproduce for 

most research teams over a longer period of time. 

Our paper achieves the objective of testing the impact of our main ingredient (active 

learning) on student achievement in the short run. There is much value added from this exercise. 

First, it is unlikely that in the short run a business as usual reform (i.e., akin to an efficiency trial) 

                                                           
2 Note, however, that the intervention protocol and length make this intervention comparable to other high-quality 
studies assessed in educational resources such as What Works Clearing House (http://ies.ed.gov/ncee/wwc/) and 
Best Evidence Encyclopedia (http://www.bestevidence.org/). 
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will achieve learning gains. Second, any hurdles that presented in the efficacy trial are likely to 

be observed in an efficiency trial. Therefore, the evaluation and implementation of a curricular 

reform will require a long-run perspective on processes and outcomes. 

This study speaks to a growing literature in economics that emphasizes the necessity of 

studying and ultimately identifying successful pedagogical approaches. For example, Dobbie and 

Fryer (2013) peep into the black box of 39 charter schools in New York and correlate data on 

school practices with credible estimates of school’s effectiveness. Fryer (2014) looks at the effect 

of injecting successful charter school strategies into traditional public schools. Machin and 

McNally (2008) evaluate the reading and overall English attainment of a national pedagogical 

strategy designed to raise standards of literacy in primary schools through the introduction of a 

structured and pre-specified pedagogical strategy. The Measures of Effective Teaching (Kane et 

al., 2010, and Kane et al., 2012) project, designed to identify successful teachers and teaching 

strategies, also relies heavily on classroom observations as well as student and teacher surveys of 

the type we administered in our study. 

There are also a number of rigorous evaluations in economics that measure the effects on 

student learning of providing classroom resources to schools such as flipcharts (Glewwe et al., 

2004), textbooks (Glewwe, Kremer and Moulin, 2009), libraries (Borkum, He and Linden, 

2012), school computers (Angrist and Lavy, 2002) and student laptops (Cristia et al., 2012). The 

impacts of these interventions are modest at best.3 McEwan’s (2013) recent meta-analysis of 

randomized control trials in primary schools of developing countries uncovers effect sizes that 

range from 0.08 to 0.15 of a standard deviation for these types of interventions. The failure of 

these resources to leverage student learning is commonly attributed to either the interventions not 

addressing curricular objectives or student needs, or to teachers receiving limited training on how 

to use these additional inputs effectively. Our study was set up to address many of these 

concerns, which makes our findings even more striking. 

There is surprisingly little empirical evidence on the effectiveness of competing teaching 

approaches in mathematics. A recent report of the National Mathematics Advisory Panel on 

instructional practices in mathematics concludes: “For none of the areas examined did the Task 

Group find sufficiently strong and comprehensive bodies of research to support all-inclusive 

                                                           
3 Angrist and Lavy (2002) study a program that funded the introduction of computers and software for computer- 
assisted instruction in Israeli elementary and middle schools. Their quasi-experimental evaluation suggests that the 
program may have had a negative impact on mathematics learning for 4th and 8th graders. 
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policy recommendations of any of the practices addressed” (Gersten, 2008: 6-189). Among the 

practices evaluated the panel looked at the use of teacher-centered versus student-centered 

approaches and the use of technology in the classroom.4  

We proceed as follows. In Section 2 we present a conceptual framework. In Section 3 we 

discuss the distinctive features of our experiment. In Section 4 we explain the data collection 

process. In Section 5 we discuss the empirical strategy. In Section 6 we present our research 

sample and discuss the internal validity of the experiment. In Section 7 we show our results on 

fidelity of implementation, test scores and class dynamics as well as some robustness checks. 

Section 8 concludes. 

 
2. Conceptual Framework 
 
Educational authorities around the world are often engaged in setting up curricular reforms with 

the goal of improving the pertinence and quality of student learning. This process usually 

involves changing syllabus content as well as the pedagogical approach used in the classroom. 

As teachers and students are usually rooted in old teaching/learning habits, the implementation of 

these reforms requires professional development, the design of appropriate classroom material, 

and the provision of adequate resources for teachers and students. Despite these investments it is 

the teacher who, ultimately, chooses how to lead her class and therefore directly affects the 

actual result of reforms. In this section we provide a simple conceptual framework to think about 

our experiment and its results.  

Learning in schools occurs in a classroom environment. The knowledge gained in the 

classroom by an individual student depends on her effort, the inputs she received from her 

teacher (teaching inputs) and the effort of her peers (Albornoz, Berlinski and Cabrales, 2010).5 

Students choose effort based on the value they attached to learning, their beliefs (given teaching 

inputs) about the consequences of their effort on learning (Chassang, Padro i Miquel and 

Snowberg, 2012), and the cost of providing this effort. This cost depends on her innate ability 

and on the knowledge and learning skills accumulated over her schooling years. 
                                                           
4 Cheung and Slavin’s (2011) meta-analysis of 75 high-quality studies of educational interventions with a focus on 
mathematics learning in K-12 that involves the use technology almost exclusively finds papers that look at the use of 
technology as a supplement to teaching in the form of drills and practice. Similarly to McEwan (2013), it reports 
gains of around 10 percent of a standard deviation for this use of technology. Cheung and Slavin (2011) find no 
high-quality studies pertaining to the use of interactive whiteboards. 
5 Other aspects beyond the classroom such as family environment, school environment, etc., are also relevant. 
However, we abstract from them in this discussion. 
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Classroom teaching is a process by which the teacher decides simultaneously an 

allocation of time and resources between tasks for every student (i.e., teaching inputs) given her 

expectation about student effort. The allocation chosen by the teacher depends on her objective 

function, her beliefs about the consequences of these allocations, and the cost of providing 

inputs. Incentives in schools are usually low-powered and therefore intrinsically motivated 

teachers can be assumed to maximize a weighted average of the knowledge gained by their 

students during the school year. 

The cost of providing inputs for teachers depends on their teaching skills (innate and 

accumulated) and the resources available to them. This is to say, how time and resources are 

allocated in the classroom between tasks requires effort in preparation and classroom delivery. 

The latter involves not only the allocation of time and activities in the classroom but also the 

pertinence of teacher reactions to student participation. Different allocations of time and 

resources may achieve different learning outcomes for students. 

Given the status quo and using a revealed preferences logic, changes in teaching inputs 

(as occur in educational reforms) require that teachers either modify their beliefs about the effect 

of the new allocation of inputs on educational outcomes or that the costs of adopting these 

changes be reduced. In the usual package of educational reform, teachers receive professional 

development targeted towards both reducing the cost of adoption and affecting the beliefs about 

the productivity of the new allocation of inputs. 

Teachers’ decision to comply with the reform (or take-up) is part of a dynamic process 

marred with uncertainty. It is dynamic in the sense that changing classroom inputs requires 

investments today (i.e., there are adjustments costs), but the benefits of these efforts may not 

necessarily be reflected in today’s classroom achievements. For example, teachers and students 

have accumulated skills in using classroom inputs in a particular way, and the switch may result 

in the loss of some accumulated teaching/learning skills (Helpman and Rangel, 1999).6 Learning-

by-doing by teachers and students may undo this loss in the long run. Therefore, achieving the 

expected productivity gain from an innovation may require time and practice with the new set of 

inputs. 
                                                           
6 There is some previous evidence that innovations that today are considered successful drivers of development (e.g., 
the micro-computer and the dynamo) did not lead to an automatic increase in productivity (see David, 1990). 
Helpman and Rangel (1999) provide an interesting explanation for this phenomenon. If productivity with a given 
technology increases with use, then the switch to another technology may lead to falls in output in the short run if 
the accumulated skills are not completely transferable. 
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The process is also uncertain because the effect of the new allocation of inputs is 

unknown ex-ante. For example, teachers and students may have types that make them more or 

less productive with different allocations of teaching inputs. If teachers are imperfectly informed 

about these types, they can learn about them through experimentation as in Karlan, Knight and 

Udry’s (2012) analysis of entrepreneurial experimentation. 

Our intervention encourages a new allocation of time to different tasks in the classroom 

accompanied by a new set of classroom and teaching materials. We support teachers in this 

transition by providing training commensurate to the length and depth of the experiment. Since 

our main objective is to affect classroom learning during our experiment, the main outcome is a 

test designed to measure learning of content and skills that should have been learned in the 

classroom in that period. As our conceptual framework highlights, for the experiment to achieve 

its objective it requires that teachers actually adopt the new approach and that students act 

accordingly. Therefore, we also measure the extent of teachers’ compliance with new allocation 

of time and students and teachers attitudes towards these innovations. 

The skills that teachers and students bring to the classroom may cause systematic 

differences in the effect the experiment has on learning. These differences may be driven by 

either differential take-up or by differences in the effectiveness of the new approach for different 

groups. For example, more teaching experience may be positively associated with the type of 

classroom management skills that are required for the new approach. However, those teachers 

may also be less enthusiastic or productive with the new approach because of their lack of 

familiarity with modern teaching methods. Also, they may have less time to reap the benefits of 

their investment. Our empirical analysis looks at heterogeneity of take-up for teachers and on 

learning and attitudes for students and teachers. For the above reasons, however, we are agnostic 

about the heterogeneous effects of the intervention. 

 
3. Research Design 
 
3.1 Context 
 
Costa Rica is a relatively small middle-income developing country. In 2011, it had a population 

of 4,726,575 people, a GDP per capita of $10,085 (2005 PPP USD), and was ranked 69th place 

by the United Nations Human Development Index. The country boasts a long tradition of 
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publicly provided education, which is free and has been compulsory since 1870, with an adult 

literacy rate of 96 percent. 

The educational system is divided into four levels: preschool education (ages 4-6); 

primary education (6 years); secondary education-middle school (seventh, eighth and ninth 

grade) and high school (tenth, eleventh and twelve grade). Currently, education is free and 

compulsory from the last year of preschool to the end of middle school. 

The academic year runs from February to December. During 2012, the school year in 

middle school was 196 days long. In the seventh grade, students in public schools have six 

mathematics lessons a week of 40 minutes each (many of those arranged in contiguous blocks). 

The school year is divided into three terms, and the mathematics curriculum in the seventh grade 

covers Integers, Geometry, and Rational Numbers. Unlike the mathematics lessons in primary 

schools, mathematics is taught by a specialized teacher. In their annual teaching plan, teachers 

assign one term to each topic. 

The teaching of mathematics in the Costa Rican context is not very different from those 

of other secondary schools in low and middle income countries around the world. The 

mathematics class is characterized by lecture-style teaching where the teacher writes down a 

definition or procedure in the blackboard using a particular example. Students take notes, ask 

questions and practice what the teacher explained. The theorems and procedures are taken as 

given truths and the objective is to practice until the students achieve mastery of their use. 

Teachers rely on a commercial textbook of their choice for teaching and provide students with a 

list of examples to practice. 

Costa Rica has a long tradition of introducing technology into schools (Zúñiga, 2003). 

The Educational Informatics Program created in 1988 (a joint effort between the Ministry of 

Education and Fundación Omar Dengo) is a national informatics program that serves students in 

preschool, primary school, and middle school (since 2001).  Technology is introduced into the 

school through computer laboratories with the objective (among others) of promoting the 

development of logical thinking by using computers to solve problems and working in teams. 

The program is not intended as a complement for teaching core subjects. 

 
  



10 
 

3.2 Experimental Design 
 
In order to reduce implementation costs, we invited to participate in the experiment all schools 

that complied with the following two criteria: a minimum of 2 and a maximum of 12 classes of 

seventh grade math in 2011 and that were located in urban and semi-rural areas easily accessible 

by roads from the capital. This rule delivered an initial list of 100 eligible schools which were all 

invited to participate by the Ministry of Public Education towards the end of the 2011 academic 

year. From that initial list, 85 schools signed agreement letters and were included in the 

experiment (i.e., in the treatment randomization).7 No school dropped out of the experiment after 

randomization; that is, our results include data from all 85 schools. All seventh grade math 

teachers and students in these schools participated in the experiment. 

Schools were assigned to one of the following five conditions: control (20 schools), 

active learning (20 schools), active learning plus an interactive whiteboard (15 schools), active 

learning plus a computer lab (15 schools), and active learning plus one computer per student (15 

schools). The intervention was much more costly to implement in schools that received some 

technology. Therefore, from a statistical power consideration, it is optimal to have larger sample 

sizes in less costly intervention groups (Nam, 1973, and Liu, 2003).8 

Randomization was done by the research team on a computer in January of 2012. We 

assigned schools to their experimental status using a block randomization procedure based on 

schools according to seventh grade enrollment.9,10 We notified the government and the schools of 

                                                           
7 The Superior Council of Education of Costa Rica approved the experiment by resolution CSE-SG-168-2012.We 
obtained an IRB from Fundación Omar Dengo.  
8A sample size of 40 schools with 60 students per school allows us to detect a minimum effect size of 0.25 standard 
deviation of the main outcome variable (a geometry test) with a statistical power of 0.8. The power calculation was 
done using the optimal design software version 3.0. It assumes that the treatment is delivered equiproportionally at 
the school level, and the outcome is measured at the student level. It also assumes a statistical significance of 0.05 
and a conditional intra-class correlation (ICC) of 0.06. This ICC is consistent with our data and econometric model 
and it is also similar to that found in other studies (Hedges and Hedberg, 2007). 

The relative cost of delivering the intervention and collecting data in the cheaper intervention group (active 
learning) was half of the cost budgeted for the more expensive intervention groups (those that received technology). 
Therefore following Liu (2003), the sample size in the cheaper intervention group should be around 33 percent 
larger.  
9 We stratified on enrollment not only to increase the precision of our estimates but, more importantly, because of 
costs considerations: ordering schools by enrollment was helpful to minimize the cost of buying technology. 
10 First, we ordered schools according to seventh grade enrollment in 2011. Second, we defined 15 bins: 10 bins of 
five schools and five bins of seven schools and we randomly ordered these 15 bins. Third, we populated the bins 
with schools. For example, if the first bin was of size five, we put the five largest schools into that bin; if the second 
bin was of size seven, we put the next seven largest schools into that bin, and so on. Fourth, we randomly assigned 
schools to treatment arms within each bin. In bins of size five every school had the same probability of receiving 
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the lottery results on February 2, 2012 (at the beginning of the school year). All the schools in 

the experiment, including those in the control group, were asked to teach Geometry during the 

second trimester (May 17 - September 5) to accommodate teacher training, the deployment of 

technology, and the printing of classroom materials. 

In Table 1, we compare the mean characteristics of the 85 schools that participated in the 

experiment with the characteristics of schools in Costa Rica. The first column shows statistics for 

the 85 schools in our sample. Column 2 shows statistics for schools in Costa Rica that satisfy the 

experiment eligibility criteria (i.e., size and urban/semi-rural location). Column 3 shows statistics 

for the whole country. On average, schools in the experiment tend to be slightly larger and are 

growing a bit more slowly than schools in the rest of the country. They have similar 

infrastructure (as measured by access to library, computers, number of classrooms, and 

restrooms) to other schools in urban and semi-rural parts of the country as well as similar 

demographic characteristics. 

 
3.3 Intervention: Active Learning11  
 
The intervention aimed for students to achieve mathematical competence as defined by PISA 

(OECD, 2009) and the mathematics curricula of many countries including Costa Rica.  

Mathematical competence is understood by the student’s ability to think, reason, argument and 

communicate using mathematics. This requires that students pose and solve mathematical 

problems and model mathematical situations using appropriate representations, symbols, tools 

and technology.  

Following the advice of local experts it was considered that generating mathematical 

competence required moving away from a traditional teaching style to a more active learning 

approach. In terms of our conceptual framework this would require a new allocation of teaching 

inputs. In order to reduce the cost for teachers of adopting this pedagogical approach, we 

commissioned the design of pedagogical material by local experts from Fundación Omar Dengo 

and Universidad de Costa Rica, advised by a team of international experts from the Center for 

Technology in Learning (CTL) at SRI International.  

                                                                                                                                                                                           
each treatment whereas in bins of size seven a school had a probability of 1/7 of receiving a treatment that involved 
technology and 2/7 probability of going into a control or the active learning treatment arm. 
11 This section draws from a report prepared for this project by Arias and Zúñiga (2012a). 
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As part of the design of the experiment, we produced a teacher’s manual and a student’s 

workbook. The teacher’s manual was elaborated with a structure that would not demand 

significant time for study by teachers. The sessions covered all the materials in the seventh grade 

Geometry curriculum of Costa Rica.12 Each session had the same structure to help teachers with 

the use and understanding of the material. The main body of the session was divided into three 

activities: exploration, formalization, and practice of concepts.  

The first of these activities is the largest departure from the traditional classroom model. 

It relies on a cycle that starts by presenting a situation to students. The teacher then guides the 

students to predict how that situation will unfold, to compare those predictions with a set of 

mathematical realities, and finally to explain the differences between their predictions and these 

facts. The ultimate goal is to construct and understand the underlying geometric concept that 

governs the situation. In contrast to the traditional lecture style, the students have a very active 

role in this process and the teachers a less controlling one. 

After exploration the teacher is responsible for formalizing the knowledge previously 

established. However, this does not mean that we expect the teacher to recite or copy 

mathematical results on the board (a strategy usually pursued in a traditional lecture style). In 

fact, we introduced a cycle in which the teacher clarifies concepts, formalize them, and finally 

verify that the students comprehend what is being taught. During this process the students still 

have active participation. 

Finally, the practice part is the more akin to the usual geometry class. It includes some 

applications of the concepts that were studied and the conclusion of the session. Unlike in the 

typical class, the manual does not offer a long list of exercises. The idea is that the mathematical 

work started during exploration, and this just provides an opportunity to consolidate what has 

been learned. 

In order to standardize and facilitate the work of the students and to provide support to 

the teachers in implementing this pedagogical approach, we created a student workbook as well. 

The student workbook has hands-on paper-based activities and is identical in knowledge content 

to the teacher’s manual. The main difference is that the teacher’s manual has advice on how to 

                                                           
12 The teacher’s manual for the technology interventions included three more sessions at the beginning to introduce 
teachers and students to the use of technology in the classroom. 
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proceed or motivate the students at different points in the lesson; this is not included in the 

student workbook. 

The materials considered the use of other class resources that facilitate these three 

activities: software in the technology arms and images or paper in the treatment arm with no 

technology. For instance, in the exploration case, students were presented with a situation (e.g., 

three different triangles printed on paper or on the screen in which the angles were highlighted 

with a different color). They were next asked to make a conjecture about the sum of internal 

angles. In the technology group, they form the conjecture by manipulating the shape of the 

triangles with the mouse and to add up the value of the internal angles. In the no technology 

group, students form the conjecture by cutting and pasting the angles of the four triangles. 

Beyond the validation received by experienced mathematic teachers in Costa Rica and 

the support from international experts of CTL at SRI, the material was also reviewed by those in 

charge of training the teachers and ultimately received the feedback from the teachers who 

participated in the training (about 45 days before starting the experiment). One manual was 

printed for each of the four conditions. All students received a student’s workbook with their 

name tag before the beginning of the experiment. 

 
3.4 Intervention: Technology 
 
The class is structured around a single pedagogical design independent of technology. This is to 

say, learning is driven by the mathematical actions that are required and by the student-teacher 

role in producing these activities rather than the technology. This is a key concept in our research 

design because, by providing a common pedagogical approach for the experiment, we are able to 

disentangle the role of the pedagogical setting from the contribution of technology.13 

Of course, all this raises the question of how we planned the use of technology in this 

experiment. The use of technology in the mathematics classroom (like other manipulatives) 

contributes to learning because it allows time to be devoted to activities that are harder to do 

using only a blackboard and a textbook, such as grouping and classifying objects, establishing 

relations, visualizing generalizations, and discovering properties. However, the introduction of 

technological resources in the classroom can be disruptive. It changes classroom routines for 

                                                           
13 It also considerably simplifies the production of a large amount of pedagogical material. 
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both students and teachers, which can demand the establishment of new rules of engagement. It 

may also require substantive new knowledge from teachers.   

Keeping these hurdles in mind, the study considered a relatively simple approach to the 

use of technology. First, we chose the software program GeoGebra, which was familiar to 

teachers in Costa Rica. 14 Second, rather than requiring teachers and students to program in 

GeoGebra, we developed a set of applets in which the students had a series of elements (or 

buttons) that could be used to manipulate geometrical objects. These manipulations were planned 

so as to put the students in the best possible position to visualize, explore, conjecture, and 

construct mathematical arguments. 

The GeoGeobra applets were the same in the three technology options; what varied was 

the time of exposure that the children would naturally have and their opportunities to drive the 

exploration. For example, students who had individual laptops could use these to check 

predictions individually, while the teacher could perform the check phase in an interactive 

whiteboard setting. 

The intervention required deployment and installation of equipment in the technology 

schools. This task was undertaken by a local NGO. Schools were inspected by an engineer after 

the lottery results were announced. In coordination with the principal, classrooms that fulfilled 

security and structural conditions were chosen for installation of the equipment.15 In schools 

assigned to the one-to-one status, classrooms were equipped with one laptop per student, one 

desktop computer, one router, two laptop carts to store and charge the laptops (while not in use), 

and one LCD projector. The initial investment cost (including hardware and set-up costs) per 

student calculated over a life span of 5 years and using a discount rate of 10 percent was 111 

dollars. Adding recurrent costs to compute the total cost of ownership took this figure to 130 

dollars.16 

In schools assigned to the interactive whiteboard status, classrooms were equipped with 

one interactive whiteboard, one desktop, and one router. The interactive whiteboard uses 

pressure-sensing technology, which means that a finger or any other writing object can be used 
                                                           
14 GeoGebra (http://www.geogebra.org/) is free and open source multi-platform dynamic mathematics software for 
all levels of education that joins geometry, algebra, tables, graphing, statistics and calculus in an easy-to-use 
package. 
15 Minor adjustments were made in some schools as needed (e.g., wires and sockets were changed, walls were 
fortified to support the whiteboard). These changes were minor and very unlikely to affect the learning environment.   
16 To put these numbers in perspective, buying laptops for every student in primary schools in Costa Rica would be 
equivalent to a 20 percent permanent increase in the per-student educational expenditure (Berlinski et al., 2011). 

http://www.geogebra.org/
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to move, click and operate the computer. The initial investment cost per student was 34.9 dollars, 

and when recurrent costs are included the total cost of ownership over a five-year life span was 

40.8 dollars.  

Schools assigned to the computer lab status had one laptop for every two students 

available at least for 2 hours a week. Schools either used their existing computer laboratories or, 

if they had no laboratory installed, we created a mobile laboratory for them. The initial 

investment cost per student was 73.4 dollars, and when recurrent costs are included the total cost 

of ownership over a five-year life span was 88.3 dollars. 

 
3.5 Teacher Training17 
 
Teacher training for this experiment provided first-hand practice with the active learning 

approach and also aimed at affecting teachers’ beliefs about the benefits of the new allocation of 

time and resources to different activities in the class. In particular, we emphasized the 

importance of devoting class time for student exploration and the role of the teacher as a 

guide/mediator for the students in this process. Training was not academic or theoretical in 

nature, but rather geared towards fulfilling the needs of teachers and students. 

The training we offered to teachers in the experiment focused on the following areas: 
 

• Giving teachers an immersion into the approach we use to develop 

mathematical competence. 

• Familiarizing teachers with how to use the teachers’ manual, the students’ 

workbook and the GeoGebra applets. We placed particular emphasis in 

practicing didactic strategies and how to involve the use of applets in these 

activities. 

• Familiarizing teachers with the technology they have been assigned to if any 

(i.e., interactive whiteboard or students laptops). 
 

At the beginning of the training program, each teacher received their laptop, corresponding 

teacher’s manual and a CD with the presentations for each training session, the GeoGebra 

applets, a manual for the use of the LCD projector, and other complementary material. 

                                                           
17 This section draws from a report prepared for this project by Arias and Zúñiga (2012b). 
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The full training session had 40 hours, divided into 4 weeks18 with 10 hours each week. 

From these 10 hours, 5 hours were allocated to on-site training and 5 hours to distance work 

supported by a virtual classroom. Training was organized by modality (i.e., active learning, one-

to-one, interactive-whiteboard, and computer lab) and delivered at two regional sites. 

A total of 130 teachers participated in the full training program. Among those who 

participated, 115 received a certificate that provided professional points in the Civil Service 

Career system. Successful completion of the training was based on attendance, classwork, and 

completion of a final assignment. There were 16 teachers who did not attend the full training 

session at some point in time. These teachers were offered a recovery training session; 9 of them 

attended and 7 were absent. 

 
3.6 Design of the Assessment19  
 
A central part of the design of any experiment is to determine the outcome measure. 20  We 

developed an assessment to measure learning and to potentially distinguish the gains from the 

different conditions. The process started at the end of the curriculum development phase.  

First, we determined which content and skills should be included in the assessment.  

Following an in-depth analysis of the curriculum, a group of experts determined the topics to be 

covered in the assessment. In addition, we outlined the two types of conceptual skills that we 

expect students to develop during the unit: basic and higher-order skills. 

Basic skills typically covered by the seventh grade syllabus require that students use parts 

of definitions, classify figures according to given properties, locate parts of figures (points, 

segments, angles), and make simple calculations to find a missing side or angle. Higher-order 

geometric skills require that students pick, compare, justify or refute conjectures and 

propositions; deduce a third observation from two givens; formulate or justify a geometric 

argument; and generalize from one or more cases. Table A1 details the differences between these 

skills. 

We developed the actual test using the following procedure: i) we created a pool of items 

for both basic and higher-order content areas; ii) experts reviewed the items; iii) we carried out 

                                                           
18 Training occurred between the April 9 and May 4.  
19 This sections draws from a report prepared for this project by Lara-Meloy et al. (2012). 
20 We followed the model of assessment development described in Shechtman et al. (2010). 
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think-aloud sessions with students on the higher-order items;21 iv) we piloted the test and used 

Item Response Theory (IRT) to select items for the final assessment;22 and v) a panel of experts 

reviewed the final assessment form.  

This process resulted in a 32-item geometry test that we administered on pen and paper 

during the experiment. For grading simplicity we decided that all items had to be multiple-

choice. The test has sound psychometric properties. The scale reliability coefficient (Cronbach’s 

alpha) is 0.71 in the control group data. The test also shows a correlation of 0.52 across schools 

with the (end of primary school) general SAT that we describe below. 

 
4. Data 
 
We collected student and teacher data before the intervention started, between late April and 

early May of 2012. During the intervention we also collected teacher logs and class observations. 

From mid-August to mid-September, we collected another round of information from teachers 

and students. We additionally gathered administrative information provided by the schools. 

The intervention affected nearly 18,000 students and 190 teachers in 85 schools. We 

collected data on all teachers and all schools. However, because of cost considerations, it was not 

feasible to collect data on all students. Each teacher was, on average, in charge of three sections 

(classrooms). Therefore, we decided to randomly select one section per teacher and collect data 

on that section only. This also had the advantage of allowing us to relate the results of class 

observations, teacher surveys with the information (surveys and tests) of students in those same 

classes. 

We also administered a student survey before the beginning of the geometry unit to 

compare the distribution of characteristics of students in different treatment arms and determine 

whether the randomization had created comparable groups. The student survey was collected in 

the classroom and contained information on students’ characteristics, their family and socio-

economic background, and experience with computers. 

                                                           
21 During the think-aloud sessions students solved the test exercises, explaining their reasoning behind their chosen 
answer to a trained observer.  
22 We modeled each item using a two-parameter logistic curve conditional on a single overall student test score. One 
parameter manipulates the location of the curve (difficulty parameter), and the second parameter affects the slope of 
the curve (discrimination parameter) when the probability of answering the question correctly is half. We discarded 
items with very high or very low estimates of the difficulty parameter and items with very low discrimination 
parameters. This corresponds to items that either did not correlate well with the total test scores or could be solved 
by intelligent guessing. 
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At baseline we administered a standardized achievement test23 used in a regional study of 

educational attainment in Latin America in 2008. The test was prepared and administered under 

the supervision of the Latin American Laboratory for Assessment of the Quality of Education 

(LLECE) of UNESCO. 

Towards the end of the geometry unit, we administered the geometry test discussed in 

Section 3.6; this is the main outcome of interest.24 Additionally, after completing the test the 

students filled a student questionnaire designed to measure treatment compliance, fidelity of 

implementation, class dynamics, and students’ attitudes towards mathematics. 

Before and after the intervention took place, we also collected teachers’ surveys. At 

baseline we asked for information regarding background characteristics of the teachers and 

general information about their mathematics class. This information is used to verify 

comparability of treatment and control groups. In a second survey, after the intervention, we 

incorporated a set of questions to measure fidelity of implementation and changes in class 

dynamics and teaching practices. 

Throughout the questionnaires we asked students and teachers a series of questions that 

we later used to form several scales. Each scale was pre-specified and had been previously used 

and validated in other studies: the 2011 surveys designed by the University of Chicago 

Consortium on Chicago School Research, the Manual for the Patterns of Adaptive Learning 

Scales (PALS) developed by the University of Michigan, and several scales developed by CTL 

at SRI International. 

Tables A2 and A3 list the scales (Column 1) and the questions (Column 2) used to build 

each scale. Column 1 also presents the source of each scale and the Cronbach’s alpha reliability 

coefficient that each scale had in our sample. The questions pertaining to each scale were 

randomly mixed in the student and teacher survey instruments. Students and teachers could give 

categorical answers of the type “strongly agree,” “agree,” etc. We aggregated those answers into 

scales using a maximum likelihood principal components estimator where only one latent factor 

was retained.25 The models were estimated on the control sample only. Column 1 in Tables A2 

and A3 present the eigenvalue of each latent factor and Column 3 shows the loading associated 

                                                           
23 The Second Regional Comparative and Explanatory Study (SERCE). 
24 The endline test was administered between August 20 and September 10, 2012.  
25 Results were almost identical when building the scales via a polytomous IRT model. 
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with each variable. After the prediction was computed to produce each scale, we standardized 

them using the mean and standard deviation of the control group.  

As is common practice in the educational literature, we collected two additional pieces of 

information from the teachers. First, we asked them to fill a short teacher log every month on a 

pre-specified date where they reported concrete features of their instructional practices, such as 

topics covered, pedagogical strategies used, any events that affected the normal delivery of 

lectures (e.g., technical problems with the equipment), and actual use of equipment, textbooks, 

and other class material.  

One potential limitation of logs is that teachers may reflect intended rather than actual 

behavior. Kennedy (1999) argues that logs are effective for collecting information about topics 

and tasks, particularly in mathematics, but are less well suited for capturing class dynamics. She 

adds that class observations, on the other hand, “can document the intellectual complexity of the 

work students are doing in class. By observing the kinds of intellectual demands that are placed 

on students in the classroom, we might be able to infer the kinds of intellectual work in which 

they are likely to show improvement” (p. 347). Therefore, we aimed at conducting one 

classroom observation per teacher by an external observer. In order to homogenize observation 

and recording criteria, we created a protocol and an instrument to perform the class observations, 

which were done by properly trained psychology students.  

Finally, we collected a rich dataset of administrative information about the school. This 

information included data on school location; computer equipment and infrastructure; size in 

terms of students, classrooms and teachers; repetition rate, etc. The information for 2011 was 

used mainly to stratify the sample when we randomized treatment. The information for 2012 was 

used to assess balance of characteristics and as a sampling universe to build our sample of 

students to be surveyed and tested.  

  
5. Empirical Strategy 
 
We estimate by ordinary least squares a set of models of the following form:  

 
                                        𝑌𝑖𝑖𝑖 = 𝛼0 + ∑ 𝛼𝑘𝑇𝑖𝑖𝑘4

𝑘=1 + 𝛽𝑋𝑖𝑖𝑖 + 𝛿𝑖𝑖 + 𝜀𝑖𝑖𝑖 ,                       (1) 
 

In model (1), 𝑌𝑖𝑖𝑖  is an outcome of interest (e.g., student performance on the geometry test or 

teachers’ openness to innovation) of individual i, in strata s and in school j. 𝑇𝑖𝑖𝑘   is a dummy 
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variable equal to one if the school j was assigned to treatment k={1,2,3,4}={active learning, 

interactive whiteboard, computer lab, one-to-one}. For brevity, in the main tables of the paper 

we pool together the three technology arms into one group (letting k={1,2}) and present the 

results with four treatment dummies in the appendix. We condition on 𝑋𝑖𝑖𝑖, a vector of student, 

teacher and school control variables. We also condition on strata fixed effect, 𝛿𝑖𝑖, and we include 

a random specification error, 𝜀𝑖𝑖𝑖. The parameter of interest 𝛼𝑘 is the average treatment effect26 

(e.g., the average effect on student performance in the geometry test of being in a one-to-one 

school versus the status quo).   

The vector 𝑋𝑖𝑖𝑖  includes several variables from student (pre-treatment SAT score, 

dummies of gender, dummies of age, mother’s education, and number of books at home), 

teachers (gender, age, and years of experience) and schools (number of students in seventh grade 

math, number of classrooms in seventh grade math, dummies of province, and a dummy variable 

that is equal to one if the school had a computer lab already available before treatment). Our 

main results control on observable characteristics since this might lead to more precise estimates. 

We relegate to an appendix results without control variables 𝑋𝑖𝑖𝑖. 

All models take into account the potential correlation between students’ and teachers’ 

performance and behavior by clustering the standard errors at the school level (i.e., the unit of 

randomization). However, the standard error estimates are typically not sensitive to the level of 

clustering. 

 
6. Research Sample and Internal Validity 
 
Our research sample covers all 85 schools and all 190 teachers that participated in the study. All 

students were eligible except for those with some kind of known physical or cognitive 

disability.27 We surveyed one complete class of eligible students per teacher.28   

                                                           
26 There is perfect compliance of the schools with the randomization status. Therefore, there is no practical 
distinction between the average treatment effect and intention to treat effect. 
27 These are 1 percent of the students in our schools, who are usually allowed special dispensations during exams 
which we could not accommodate. These students were identified before the intervention started.  
28 Of the 190 teachers, 46 are in the control group, 44 in the curriculum group, 36 in the interactive whiteboard 
group, 28 in the group that received computers labs, and 36 in the one-to-one group. The distribution of students in 
these classes were as follows: 1,108 in control,  1,196 in active learning,  970 in interactive whiteboard,  740 in labs 
and 868 in one-to-one. As we show in Table 3 and in Appendix Table B3 the number of students per school and the 
number of classes/teachers per school are balanced across treatment arms. 
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Participation rates in our measurement activities were high as we describe in Table 2. 

Row 1 shows that the student post-treatment survey and geometry test had a non-response rate of 

9.1 percent. Columns 2 and 3 show the regression coefficients and standard errors of a model 

described by equation (1), without controls, where the dependent variable is a dummy equal to 

one if the student was missing on the geometry test day and zero otherwise. The base category is 

the control group. There are no significant differences between treatment and control. Column 4 

presents the p-value of a joint Wald test of the null hypothesis that all coefficients are equal to 

zero, which we cannot reject.  

The administration of the test was contracted to a polling company that surveyed schools 

and classes during a four-week period. We followed the protocol used by UNESCO for the 

administration of the test. The teacher did not know the test ahead of time and was not in the 

classroom during the test. The exam was administered by trained external invigilators who were 

instructed not to answer students’ questions. We agreed with the survey company a schedule that 

would balance the days on which schools in different treatment arms would be visited. The 

geometry test was administered on average about 6 days before the end of the second term. By 

design, it can be seen from row 2 columns 2 and 3 that there are very little differences in dates 

between schools in each treatment arm.29  

The pre-treatment SAT test had a non-response rate of 21.1 percent with a larger non-

response rate in the schools that received a computer lab.30 Nevertheless, we cannot reject the 

null that all treatment arms had similar non-response rates at baseline.31 In order to preserve 

sample size when conditioning on SAT in our econometric models we impute missing SAT 

using mean class characteristics and adding a categorical variable to denote this imputation.32  

                                                           
29 In each visit, the survey team would provide the teacher with numbered copies of the exam so that he/she would 
administer the test to the absent students within the following week. About 5.6 percent of the tests were 
administered by the teacher rather than by the survey team, with no statistically significant difference between 
students in different treatment status. 
30 Differences in response rates between the baseline SAT and the endline geometry test can be explained by 
differences in the strategies used by UNESCO and the contracted polling firm to collect data. The polling firm 
scheduled visits to school so that they coincided with the normal math class schedule. UNESCO, on the other hand, 
announced to the school a slot where they would be visit and administered the test to the students that were present. 
31 When we use three dummies for technology rather than one (Appendix Table B2), we find that Missing SAT and 
Non-eligible students are statistically significant at the 10 percent level for students assigned to the laboratory 
condition.  
32 Our main results are robust to dropping observations with an imputed SAT in the sense that the point estimates do 
not change. However, the standard errors are slightly larger. 
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We collected teacher data using three instruments: surveys, class observations, and logs. 

The non-response rate of teachers’ surveys was very low in both waves; with no significant 

differences by treatment status. We set out to collect data from each class through a class 

observation. Due to logistical and budget constraints we only managed to visit 80 percent of the 

classrooms. Those that received technology were 6 percent more likely to be administered a 

classroom observation than control classes, but this difference was non-statistically significant.33 

We also collected teacher logs at the end of June, July, and August. The first round of 

teacher logs was completed by 89 percent of the teachers. The non-response rate increased with 

time, reaching 16 percent in July and almost 24 percent in August. Unfortunately, non-response 

rates seem to be correlated with treatment. For that reason we decided to limit the use of these 

logs in our main analysis.34 

Table 3 shows pre-treatment sample means and differences in those means across 

treatment groups. Overall these differences are small and not statistically significant. Half of the 

students in the research sample are female and on average they are approximately 13 years old.  

Approximately 42 percent of the students have mothers with primary education and 41 percent 

with secondary education. On average they report having 3 books at home, and 74 percent have 

access to computers at home, which suggests familiarity with technology. For all these variables, 

the Wald test of the null hypothesis that all coefficients are equal to zero cannot be rejected.35  

The pre-treatment SAT score is perhaps the most important variable since it provides an 

indication of math knowledge acquired by these students before starting seventh grade. On 

average these students correctly answered 46.6 percent of the questions on the exam. 36 The 

differences among treatment arms are negligible. 

The characteristics of teachers and schools are also very similar across treatment groups. 

On average about half of the teachers are male, and they have about 11 years of experience. 

Schools have on average 220 students and 2.2 math teachers in seventh grade math. The majority 

of them have some kind of computer lab and internet access. The repetition rate is 8.7 percent, 

                                                           
33 When we use three dummies for technology rather than one (Appendix Table B2), we find that one-to-one classes 
were 12 percent more likely to be observed and this coefficient is statistically significant at the ten percent level.  
34 We only use this information in Figure 4. 
35 When we use three dummies for technology rather than one (Appendix Table B3), three out of the 60 coefficients 
are statistically significant.  In particular, students in the interactive whiteboard are younger and more likely to be 
female than those in the control group. Also, teachers in the interactive whiteboard condition are marginally more 
likely to be male. However, the magnitude of these differences tends to be very small. 
36 In the nationally representative sample of sixth grade students in 2008 the response rate was 49 percent. 
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and 44.7 percent are suburban schools. We cannot reject the null that all of these variables are 

the same across intervention groups. 

At the beginning of the school year, we announced to schools their treatment status. In 

Table 4 we show that by the time of the announcement 83.7 percent of the teachers had already 

been assigned to their classes, with no apparent differences in the different intervention groups.  

We asked all teachers of the schools participating in the experiment to teach seventh 

grade geometry during the second term of the school year (the term suggested by the Ministry of 

Education). Only 3 classes (in the control group) out of 190 did not comply with this request and 

about 12.6 percent taught the introductory four units of geometry during the first term and then 

stopped at our request. Again, the majority of these classes are in the control group. If knowledge 

depreciates over time then this deviation should bias the results against the control group 

schools. 

 
7. Results 
 
We present the results of the paper in this section. We proceed in four steps. First, we show how 

the intervention changed teaching inputs. That is, we look at the change in the use of resources in 

class, the time allocated by the teacher to different activities, and the resulting change in student 

class participation. Second, we present the effects of the intervention on student learning and 

assess robustness of the test results. Third, we investigate treatment effect heterogeneity. We 

conclude this section by analyzing teacher attitudes, aspects of student-teacher interactions and 

student effort that might explain the test results.  

Throughout this section we present OLS estimates of equation (1), which include controls 

for randomization strata, student, teachers and school characteristics. We present results only 

controlling for strata in Appendix Tables C. Not surprisingly, given that the variables are 

balanced, point estimates do not change.37  

  

                                                           
37 As in Section 6, in Appendix Tables B we also present results using the three technology dummies. 
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7.1 Teaching Inputs 
 
The take-up of the treatment was high. In other words, the usage of resources, the allocation of 

time and the resulting class dynamics, with more student participation, show high compliance 

with the treatment.38  

We use the endline student surveys to create indicators of classroom material and 

technology use. The results for these outcomes are presented in the top panel of Table 5 where 

we estimate equation (1) using as a dependent variable whether students had access and report to 

have used the materials and technology we provided for their class or not.39 All estimates for the 

use of classroom materials are positive and large. Indeed, we cannot reject the null hypothesis 

that all classes in the treatment arms used the materials. Did the teachers use the available 

technology in class? Again, we cannot reject the null hypothesis that classes assigned to 

technology used it.40  

Using classroom observations we measure whether teachers and students were observed 

using different materials and tools in class.  In the bottom panel of Table 5, we present results 

showing that students’ workbooks and teachers’ manuals were used in all treated classrooms and 

the technology arms used the prescribed software (GeoGebra). Interestingly, students did not 

appear to have used the Internet in the treated classrooms more than in the control schools. 

Finally, all treatment groups used the traditional blackboard less than the control classrooms. 

The intervention promoted a new allocation of time in class with more time devoted to 

exploration rather than practice and a more active classroom experience for the student. We 

analyze these outcomes in Table 6. First, we analyze the time devoted to different classroom 

activities. Second, we constructed scales of active engagement in class and classroom activity. 

Third, we analyze measures of the math practices teachers used in the classroom.  

In the first eight rows of Table 6, we use classroom observations to show the way time 

was allocated in the classroom. The observer recorded the duration in minutes of the three main 

                                                           
38 As discussed in Section 3.5, the vast majority of teachers in the treatment arms participated and passed the 
training. The percent of teachers that were trained in each treatment arm is as follows: zero percent in the control 
group, 91 percent in the active learning group, 97 percent in the interactive board group, 100 percent of teachers in 
computer labs schools, and 94 percent in one-to-one.  
39 Each variable is a dummy equal to one if at least half of the students in the class reported to have had access and 
used class materials, interactive whiteboards, laptops or some technology. In Appendix Table D we report measures 
built using teacher data. We found very similar results using teacher-level data and class observation data.  
40 Reassuringly, interactive whiteboards were used only in interactive whiteboards schools and computers only in 
schools that should have received computers (Table B5).  
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moments of the class: exploration of new concepts, formalization, and practice. Similarly, s/he 

also recorded the amount of time allocated to different strategies used to teach: plenary lecture, 

class discussion, group work, in pairs or individually. Using this information, we constructed a 

set of variables that measure the proportion of total class time allocated to each moment and to 

each teaching strategy. In the treatment classrooms there was more time allocated to discussion 

and less to the plenary lecture and individual work. As our treatment intended, more time was 

devoted to exploration and formalization and less to practice.  

In the ninth and tenth rows of Table 6, we use student questionnaires to study whether the 

intervention fostered an environment where students were more actively engaged. Looking at the 

questions that pertain to these scales (Appendix Tables A2-A3), we infer that students in the 

treatment group explained concepts to the class more often, prepared more exercises for others to 

solve, and frequently discussed possible solutions or arguments with other students. 

Furthermore, in last two rows of Table 6, we show that students in all treatment groups 

were stimulated in ways consistent with the objective of achieving mathematical competence. In 

particular, the class observer recorded whether students made, explained and validated 

mathematical conjectures, explained relations between concepts, manipulated propositions, or 

discovered mathematical rules from observing and analyzing patterns. The first scale looks at 

students prescribed learning practices while the second looks at whether or not teachers 

purposefully fostered those practices. We see positive point estimates for all groups with larger 

magnitudes and statistical significance in the technology arm. 

 
7.2. Student Learning 
 
We interpret the changes in teaching inputs and in class dynamics as an indication that teachers, 

familiar with the intervention, took the option of using the offered materials and equipment. 

Unfortunately, this did not translate into gains in learning. 

Table 7 presents the main results of the paper. The dependent variable is the score in the 

geometry test (computed using the IRT parameters of the control group) and then standardized 

using the mean and standard deviation of the control group.41 Therefore the coefficients can be 

interpreted as the treatment effects in terms of that standard deviation.  

                                                           
41 Results are basically the same if instead of constructing a test score using IRT we use the percent of correct 
answers as a dependent variable. 
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The treatment caused a significant loss in geometry knowledge. The average treatment 

effect of the active learning treatment alone is a reduction in test scores of 17.1 percent of a 

standard deviation. The effect of active learning with technology is a loss of 24.7 percent of 

standard deviation. Both coefficients are statistically significant and a Wald test cannot reject the 

null hypothesis that they are equal.  

In rows 2 and 3 of Table 7, we separate the score between basic and higher-order skills 

items. Recall that the basic skills items are designed to measure foundational geometry abilities 

or basic concepts whereas the items related to higher-order skills are designed to measure higher-

order geometric practices; which a priori are easier to acquire using the active learning approach. 

We find no differences in results when comparing the performance on basic and higher-order 

items to the overall performance. We speculate that in order for students in the treatment group 

to outperform students in the control group on the higher-order items they should have done at 

least similarly on the basic items, but they did not. 

We next provide evidence that the results are robust. The geometry unit is divided into 

five sections: introduction, measurement and classification of angles, relations between angles, 

triangles and quadrilaterals. In Panel A of Figure 1, we remove, one at a time, all the items that 

belong to each of the five sections. If a given treatment group found the material on a section 

particularly difficult then we would find some reversal in the relative rank of the treatment 

effects when that section is not considered in the score. That is not the case.  

The items on the test also vary by difficulty. In Panel B we classify the 32 test items into 

eight groups of four items each according to the number of percent correct answers in the 

sample. We remove one group of items at a time and re-standardize the score. The relative 

performance on the test is the same when any given difficulty group is discarded.  

We also check, in Panel C, whether the results are driven by particular schools in the 

sample. To do this and still preserve the validity of the experiment, we make use of the 

stratification of our research sample. We remove one stratum at a time. Results are very stable, 

which suggest that no individual school or strata drives the treatment effect and that there is not 

much heterogeneity in the treatment effect with school size.42 

                                                           
42 Panels A and B in Appendix Figure 1 presents a similar exercise as the one done for Figure 1 but instead of taking 
out one section at a time (Panel A) we estimate the impact only on items of sections 1, 2…, 5. Treatment effects are 
slightly higher (and noisier) than the average for earlier sections. Qualitatively, however, the results as well as the 
ranking of treatment effects across treatment groups are basically the same. A similar conclusion is reached when 
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In Figure 2, we present the coefficients of estimating equation (1) with the three 

technology dummies rather than the aggregating them into one dummy as in Table 7 (with the 

corresponding results in Appendix Table B7). Combining the one-to-one technology with the 

active learning approach led to an additional loss of 18.4 percent of a standard deviation, taking 

the total loss in this treatment arm to 35.5 percent. Results for computer lab are very similar to 

the results of the active learning approach. The usage of interactive whiteboards slightly 

ameliorates the negative impact of the change in pedagogy. Students in this group learned 15.5 

percent of a standard deviation less than those in the control group. 

In Appendix Table A4, we show one sided p-values of pair-wise comparisons between 

different treatments. In each case, the null hypothesis is that the treatment effects are equal and 

the alternative is that one treatment effect is smaller than another. Basically, the one-to-one 

treatment effect is smaller than any of the other treatment effects at standard levels of 

significance. However, we cannot reject that interactive whiteboards, computer labs, and the 

active learning approach without technology have the same deleterious effect. The results are not 

surprising as the interactive whiteboard is a priori less disruptive and closer to teacher and 

students classroom habits than computers. Although the availability of computers on a one-to-

one basis was intended to give teachers and students more opportunities for meaningful hands-on 

exploration, it also introduced another layer of innovation, which may have further hindered the 

learning process. 

 
7.3. Treatment Effect Heterogeneity 
 
As we explained in our conceptual framework, the skills of teachers and students may affect both 

the input decision of the teachers and the gradient of the teaching inputs on student learning. We 

speculate that the higher the level of skills, the higher the opportunity cost of 

switching/complying but also the higher the productive effect of the new allocation of inputs. 

Thus, it is hard to predict a priori whether higher skills will result in more/less adoption or in 

worse/better results for students. 

                                                                                                                                                                                           
estimating the treatment effects only on a subset of items of a given difficulty (akin to Panel B of Figure 1). In the 
case of strata, because each stratum has only 5 to 7 schools/clusters, we estimated a local polynomial regression of 
the outcome on the strata dummies. We found that the treatment effect is always negative and has a u-shape with 
middle-sized schools performing relatively worse. 
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We use two measures of teachers’ skills: years of teaching experience and teacher’s 

implicit quality. We built the latter as follows. First, within treatment arms we compute the 

percentile rank of each student in the baseline SAT and in the geometry test. Second, we take the 

difference between the geometry percentile rank and the SAT rank and average it across 

teachers. Teachers that were able to improve further the students’ percentile rank are considered 

better.43 We measure students’ skills by their pre-treatment SAT. To be parsimonious in our 

regression analysis we use the median in our sample of experience, quality, and skills to divide 

the sample into high and low groups of the underlying variable.  

We start by looking at the adoption decision. We consider the outcomes of Table 5 and 6 

and investigate whether there are heterogeneous effects on teachers’ experience and quality. For 

the set of outcomes in each table, we estimate a set of regression models using equation (1) 

individually for each group and then test the null joint hypothesis that all coefficients in those 

models are equal between groups (e.g., high experience versus low experience teachers) for each 

treatment arm.44 We cannot reject the null that the adoption was homogeneous between teachers 

with high and low experience or between teachers’ of high and low quality.45 

In Figure 3, we show a local polynomial regression of the geometry test-scores 

(controlling for strata fixed effects) on the three mediating variables. In each graph we show 

three lines. The dashed line is for the control group, the solid line is for those students in the 

active learning condition only, and the long-dashed line is for those students in the active and 

learning and technology groups. At the bottom of the graph, we overlap a histogram of the 

mediating variable, and the vertical line marks the median of the mediating variable distribution.  

In panel A, we explore the relationship between treatment effects and teacher experience. 

Looking at the control group, test-scores first increase with experience up to about 7 years then 

fall monotonically until 21 years and start rising again afterwards.46 Technology follows a similar 

pattern to the control group, while the active learning group looks flat over the whole range of 

experience. The treatment effect is negative at low levels of experience but the magnitude 

                                                           
43 Reassuringly, this measure of teacher quality is orthogonal to treatment and is able to explain a large proportion of 
the total variance in geometry test scores. 
44 We implement this test using seemingly unrelated regressions and taking into account the covariance between 
groups and outcomes.  
45 To save space, we do not show these results, which are available from the authors upon request. 
46 The lack of monotonic relationship is not particularly surprising as several studies have found difficult to pin 
down any sort of systematic relationship between student test-scores and teacher experience (e.g., Aaronson et al., 
2007, and Harris and Sass, 2011).  
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shrinks with experience up to a point where both treatment effects become positive. In Table 7 

rows (A) and (B), we show that on average, classes led by teachers with experience below the 

median tended to perform worse than in classes with more experienced teachers.47  

In panel B, we measure the relationship between treatment and teacher quality. First, we 

can see that the data supports our interpretation of our measure of teacher quality as we see that 

student geometry scores in the control group rise monotonically with the quality of the teacher. 

Although this relationship falls towards the end of the quality spectrum, there is little mass at that 

point. The treatment groups follow a similar pattern, but the gradient of quality is smaller. In 

Table 7 rows (C) and (D), we do not find significant differences in treatment effects for teachers 

of low and high quality. 

In panel C, we look at the pre-treatment SAT. Most of the mass is towards the middle of 

the support of the distribution. Performance in the geometry test increases with pre-treatment 

SAT. The line for the control group is always above the lines for the treatment arms. The line for 

the control group increases faster with pre-treatment SAT than for the treatment arms. Therefore, 

there is a larger loss for students with higher knowledge of math at baseline. 

We confirm this result in the second panel of Table 7 where we show separate estimates 

for students below (row E) and above (row F) the median of the ability distribution. The main 

differences in treatment effects are observed in the active learning group. In the technology 

group that difference is smaller. A possible explanation is that the traditional lecture teaching 

style was geared towards the more able students. The intervention changed class dynamics, 

assigning relatively more emphasis to tasks that benefited lower-achieving students.48 

 
7.4. What Went Wrong? 
 
A loss in student learning has to be the result of either lower effort from students or teachers, or a 

worsened interaction between the teachers, the students and the subject. The role of the teacher 

in the classroom is to facilitate the interaction between the students and the subject matter. A 

failure in learning is tantamount to a failure in this process. Do we have any evidence of that 

occurrence? First, in the absence of a direct measure of teacher effort, we study teachers’ 

                                                           
47 However, we cannot reject that the coefficients for each group by treatment arms are jointly equal.  
48 The p-value of the joint Chow test is 0.1. We also found that there are no differences in the treatment effects 
between males and females. Results are available from the authors upon request. 



30 
 

attitudes towards innovations and the quality of the interactions they have with their students. 

Second, we analyze how student effort was affected by the intervention. 

In Table 8, we look at the attitudes of teachers in the new environment. We start by 

analyzing three scales. Access to new ideas aims at measuring how much professional 

development and feedback or discussions about new teaching strategies each teacher had 

recently. Innovation measures whether teachers in the school are willing to innovate in their 

daily teaching practices. Reflective dialogue captures how much discussion exists among 

teachers of the school regarding the curriculum and general goals. We find positive effects but 

only at the margin of statistical significance, even after aggregating these variables in a single 

scale (see, for instance, Kling, Liebman and Katz, 2007).49  

We also analyze measures of the quality of the interactions between teachers and 

students. The scale, built using class observations, recorded whether teachers maintained order in  

the class, offered students clear instructions, and properly answered students’ questions. A 

second related scale, teaching efficacy (built using surveys), measures whether teachers exposed 

to the new curriculum felt less in control of the class and of the learning experience of their 

students. We find overall a negative impact of the treatment on these two scales, particularly 

when we combined them into one measure.50 

As further evidence of the deterioration of the teacher-student interaction we use teacher 

logs to track how classes progressed through the syllabus during the trimester.51 In Figure 4, we 

show for every unit of the syllabus the proportion of teachers that have completed them at three 

different points in the calendar: June, July and August. As can be seen, the control group 

progressed significantly faster than the treatment arms, with no discernible difference between 

treatment groups. Although we have shown in the robustness analysis that this slower 

progression cannot explain the negative test results,52 it does raise the point that there might have 

                                                           
49 We estimate equation (1) by a set of seemingly unrelated regressions for all the outcomes and use the covariance 
matrix to compute the standard error of the average (combined) treatment effect. 
50 We found no evidence that there was heterogeneity in these treatment effects by the experience and quality of the 
teachers. Results are available from the authors upon request. 
51 A priori, the intervention could have speeded or delayed the completion of the syllabus. On the one hand, the 
pedagogical approach was new and could have slowed down the class. On the other hand, we provided structured 
printed material and training which should have reduced the burden of class preparation.  
52 We designed the test so as to have a heavier load of questions in the middle of the syllabus to guard us from the 
possibility that the treatment could slow down the delivery of material. 
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been significant adjustment costs and teachers in the treatment arms may have rushed over some 

of the material to catch up. 

We next analyze how the intervention affected student effort. We do not observe student 

effort directly so, instead, we look at scales for bad behavior, academic press, avoidance of 

novelty, academic engagement, and preference for math. In the first five rows of Table 9, we 

estimate equation (1) on each separate scale and confirm that students’ behavior deteriorated, 

they were less willing to experience with new learning strategies, they were more disengaged 

from the class, they were less pressed to exert effort, and they liked math less. Then we estimate 

the average treatment effect on all five outcomes combined.  The estimates are overall negative 

but insignificant. 

In Figure 5, we show local polynomial regressions for these five outcomes scales 

(controlling for strata fixed effects) on student pre-treatment SAT. The index of bad behavior 

(e.g., “sometimes I bother my teacher during class”), falls monotonically with SAT for the 

control group. In fact, it does fall at a faster pace in the control than in any of the treatment arms. 

Similarly, academic press (e.g., “the teacher expects everyone to work hard”) increases 

monotonically with SAT for the control group but is flat or concave for the treatment arms. The 

behavior of the other outcomes is similar and highlights that students with higher pre-treatment 

SAT were disproportionally disengaged from the class.53  

The similar heterogeneity patterns in learning outcomes and behavioral responses 

highlighted in this section are reassuring. So, why did the better students fail to engage? One 

possible interpretation is that they were better equipped to learn under the old regime. Therefore, 

they exerted more effort, felt more engaged, behaved better, and ultimately learned more. A 

second explanation is that the intervention provided new opportunities for students to get 

distracted. Indeed, if we separate the technologies we find that the strongest negative results are 

for the high ability students in the one-to-one schools.54 A third possible explanation is that status 

quo teaching was geared toward high-ability students and that a structured curriculum affected 

teachers’ ability to pursue this strategy. 

 

                                                           
53 We separated the sample according to the pre-treatment SAT and found that high ability students were less 
engaged than students in the control group. Using a Chow test we reject the null that the coefficients are equal for 
high and low ability students. 
54 Results are available upon request. 
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8. Conclusion 
 
In this paper we report the results of an experiment with seventh grade Costa Rican children 

designed to improve their ability to think, reason, argument, and communicate using 

mathematics. We created a structured pedagogical intervention that allowed students the 

opportunity for a more active role in the classroom. The intervention blends a modern curricular 

approach with technology for teaching geometry.  

We randomly assigned 85 participating schools to treatment and control groups. All 

students (18,000) and teachers (190) in the seventh grade of these schools participated in the 

experiment. Treatment schools received the active learning intervention. In addition, in order to 

assess the role of technology keeping constant the pedagogical approach, we randomized 

treatment schools to receive no technology, an interactive whiteboard, a computer lab, or a 

laptop for every child in the classroom. 

We find that the control group learned significantly more than any of the four 

intervention groups. The students using only the active learning approach learned about 17 

percent less than the status quo. The loss in the group that also received technology was 25 

percent of a standard deviation. We find that the best students were harmed the most by this 

intervention. Concurrently, their behavior deteriorated and they were less engaged with learning 

mathematics. The evidence suggests that teachers went through the motions as prescribed but did 

not master the innovation in a way that would have allowed students to benefit the most from it. 

We can rule out several nuisance interpretations and explanations of these findings. First, 

classroom material was designed by a team of recognized local experts advised by a group of 

international specialists for a non-negligible portion of the seventh grade curriculum. Moreover, 

it was aligned with current curricular reforms in the country. Therefore, the experiment sheds 

light on a salient and significant educational policy.  

Second, the clustered randomized design ensures neither schools, nor teachers, nor 

students could have selected into the treatment. Furthermore, the fact that all teachers and all 

students participated in the experiment rules out other sources of possible biases. Indeed we 

showed that the experiment had perfect compliance, was internally valid, and was implemented 

in a large representative sample of schools. That is, this is not a result of a small experiment on a 

bizarre sample. 
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Third, there were very high levels of teacher participation in training where the material 

was tried and validated by teachers before the intervention started. We interpret high take-up 

rates of the materials/equipment and the changes in class dynamics as suggestive that the 

resources were deemed useful for classroom use and that teachers bought into the changes we 

proposed. 

Fourth, we use a psychometrically valid test which was designed to measure not only 

knowledge of basic concepts but also higher order skills (that we expected the intervention 

would foster). We find that the treatment groups performed worse than the control in both 

learning dimensions. We also present evidence that the results are robust to redefining the test by 

leaving out certain syllabus sections or items of different difficulty level. It is also reassuring that 

the heterogeneity observed in learning is consistent with the heterogeneity in student behavior, 

effort, and engagement. 

To conclude, these results are not at odds with the possibility that with more training, 

fine-tuned materials, and the benefits of learning by doing active learning with blended 

technology may lead to significant improvements in mathematical competence. As we have 

shown, however, educational reform may entail sizeable costs in the short run. This implies that 

policy makers should monitor carefully the performance of the educational system during 

reforms and consider compensatory programs.  
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Tables and Figures 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Schools in 
Sample

Costa Rica 
(restricted)

Costa Rica 

[1] [2] [3]
Enrollment

Students per school (2011) 736 601 408
Log (change students per school) 2007-2011 3% 4% 5%
Students in 7th grade (2011) 228 188 124
Log (change in 7th grade) 2007-2011 1% 2% 1%

Demographics (2011)
Percent of female students (school) 50% 51% 50%
Percent of female students (7th grade) 48% 48% 47%
Average age (school) 14.5 14.6 14.8
Average age (7th grade) 13.1 13.1 13.1

Infrastructure (2011)
Percent of schools with library 74% 73% 56%
Percent of schools with restrooms 62% 65% 61%
Average number of classrooms 20.0 17.1 12.4
Average number of computers 32.0 29.6 22.8

Number of Schools (2011) 85 397 773

Table 1: Background and Sample Comparison
(mean characteristics)

Note: Column [1] shows means for schools in the sample which are located in Alajuela, Cartago, 
Desamparados, Heredia, Occidente, Puriscal, San Jose (Central, Norte) and San Ramon. Column [2] is 
restricted to schools in the country that satisfy the experiment elegibility criteria. In column [3] we 
show the average for Costa Rica.
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Active 
Learning

Active 
Learning 

&Technology
[1] [2] [3] [4] [5]

Student Level Variables
Missing on Geo test day 0.091 -0.017 0.008 0.461 4625

[0.288] [0.024] [0.018]

Geo test date (# days after end of geo unit) 6 1.813 -0.323 0.425 4157
[6.489] [1.971] [1.815]

Missing SAT (among eligible students) 0.211 -0.027 -0.098 0.215 4157
[0.408] [0.091] [0.070]

Student with disability (did not take geo test) 0.011 -0.010 -0.017 0.233 4881
[0.103] [0.012] [0.011]

Teacher Level Variables
Missing teacher survey (baseline) 0.005 -0.025 -0.021 0.396 190

[0.073] [0.019] [0.015]

Missing teacher survey (endline) 0.032 0.003 -0.012 0.865 190
[0.175] [0.035] [0.031]

Missing class observation 0.195 0.027 -0.059 0.444 190
[0.397] [0.095] [0.072]

Missing teacher log June 0.111 -0.022 -0.163 0.082 190
[0.314] [0.127] [0.092]*

Missing teacher log July 0.163 -0.147 -0.192 0.022 190
[0.370] [0.082]* [0.068]***

Missing teacher log August 0.237 -0.102 -0.175 0.062 190
[0.426] [0.101] [0.073]**

Note: Each row shows statistics for a different variable Yisj of individual (student, teacher or school) i, in strata s and in school j.  Column 
[1] shows the sample average and the standard deviation in square brackets. Columns [2]-[3] show the regression coefficients and the 
standard errors in square brackets corresponding to equation (1), a regression model that only includes controls for strata.  Standard errors 
are clustered at the school level. *** p<0.01, ** p<0.05, * p<0.1. Column [4] shows the p-value of a test of all coefficients jointly equal 
to zero. Column [5] shows the sample size.

OLS coefficients and 
Table 2: Non-Response Rates

p-value joint 
test coeffs 

equal to 
zero

Sample 
mean and 

[s.d.]      

Sample 
Size
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Active 
Learning

Active 
Learning 

&Technology
[1] [2] [3] [4] [5]

Student Level Variables
Percent Male 0.489 -0.029 -0.018 0.300 4157

[0.500] [0.019] [0.018]

Age (years) 12.970 0.072 -0.022 0.227 4127
[0.878] [0.061] [0.041]

Mother's Education (Primary) 0.419 0.046 0.010 0.495 4106
[0.493] [0.044] [0.043]

Mother's Education (Secondary) 0.406 0.003 0.008 0.942 4106
[0.491] [0.025] [0.025]

Number of books at home 3.161 -0.085 -0.052 0.578 3560
[1.565] [0.083] [0.094]

Have a PC/laptop at home 0.735 -0.033 -0.004 0.576 3543
[0.442] [0.036] [0.031]

SAT (% Correct) 0.466 -0.019 -0.008 0.496 3278
[0.145] [0.017] [0.017]

Teacher Level Variables
Percent Male 0.486 0.029 0.146 0.243 185

[0.501] [0.127] [0.102]

Age (years) 36.668 0.853 0.104 0.795 184
[7.772] [1.385] [1.122]

Experience (years) 11.652 0.500 0.400 0.895 184
[6.543] [1.251] [0.950]

School Level Variables

Students 7th Grade 219.694 -0.650 -1.065 0.993 85
[114.174] [16.949] [8.923]

Classes 7th Grade 6.847 -0.000 -0.194 0.710 85
[3.053] [0.380] [0.259]

Math teachers 7th grade 2.235 0.100 0.044 0.948 85
[1.221] [0.355] [0.331]

Computer Lab 0.741 0.000 -0.017 0.986 85
[0.441] [0.148] [0.124]

Internet in School 0.729 0.150 -0.010 0.296 85
[0.447] [0.136] [0.129]

7th Grade Repetition 0.087 -0.018 -0.011 0.644 85
[0.062] [0.020] [0.016]

Not Urban 0.447 -0.050 -0.068 0.852 85
[0.500] [0.148] [0.121]

Table 3: Differences in Pre-Treatment Means

Note: Each row shows statistics for a different variable Yisj of individual (student, teacher or school) i, in strata s and 
in school j.  Column [1] shows the sample average and the standard deviation in square brackets. Columns [2]-[3] 
show the regression coefficients and the standard errors in square brackets corresponding to equation (1), a regression 
model that only includes controls for strata.  Standard errors are clustered at the school level. *** p<0.01, ** p<0.05, 
* p<0.1. Column [4] shows the p-value of a test of all coefficients jointly equal to zero. Column [5] shows the sample 
size.

Sample 
Size

Sample 
mean and 

[s.d.]      

OLS coefficients and [s.e.] p-value 
joint test 
coeffs 

equal to 
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Active 
Learning

Active 
Learning 

&Technology
[1] [2] [3] [4] [5]

Learned teaching assignment before lottery 0.837 -0.106 -0.054 0.398 190
[0.370] [0.079] [0.064]

Class learned geometry 1st Term 0.016 -0.020 -0.041 0.386 190
[0.125] [0.050] [0.044]

Class learned 4 geo units in 1st Term 0.126 0.066 -0.080 0.135 190
[0.333] [0.122] [0.094]

Note: Each row shows statistics for a different variable Yisj of individual (student, teacher or school) i, in strata s and in school j.  
Column [1] shows the sample average and the standard deviation in square brackets. Columns [2]-[3] show the regression 
coefficients and the standard errors in square brackets corresponding to equation (1), a regression model that only includes controls 
for strata.  Standard errors are clustered at the school level. *** p<0.01, ** p<0.05, * p<0.1. Column [4] shows the p-value of a test 
of all coefficients jointly equal to zero. Column [5] shows the sample size.

Table 4: Gaming

Sample 
mean and 

[s.d.]      

OLS coefficients and p-value 
joint test 
coeffs 

equal to 

Sample 
Size
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Active 
Learning

Active Learning 
&Technology

[1] [2] [3] [4]

Access/ reported use (by students):

Class materials 0.764 0.789 0.587 190
[0.066]*** [0.054]***

Some technology in class -0.046 0.897 0.000 190
[0.054] [0.047]***

Observed use:
Class uses student's workbook 0.811 0.989 0.003 153

[0.060]*** [0.030]***

Class uses teacher's manual 0.855 0.966 0.064 153

[0.055]*** [0.036]***

Class uses Geogebra software -0.010 0.766 0.000 153

[0.054] [0.059]***

Class uses internet 0.004 0.034 0.180 153

[0.014] [0.022]

Class uses regular blackboard -0.267 -0.391 0.175 135

[0.109]** [0.100]***

Table 5: Use of Classroom Resources
OLS coefficients and [s.e.] p-value of 

Wald that 
[1]=[2]

Sample 
Size

Note: Each row shows statistics for a different variable Yisj of individual (student, teacher or school) i, in strata s 
and in school j.  Columns [1]-[2] show the regression coefficients and the standard errors in square brackets 
corresponding to equation (2), a regression model which includes strata controls, individual controls (gender, age, 
mom education, books, SAT), teacher controls (gender, age, experience) and school controls (# students in 7th 
grade, # classrooms in 7th grade, Lab in school, region dummies). Standard errors are clustered at the school level. 
*** p<0.01, ** p<0.05, * p<0.1. Column [3] shows the p-value of a Wald test that coefficients [1] = [2]. 
Column [4] shows the sample size.
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Active 
Learning

Active 
Learning 

&Technology
[1] [2] [3] [4]

Share of class time devoted to:
Exploration 0.310 0.452 0.029 153

[0.080]*** [0.065]***

Formalization -0.102 -0.063 0.127 153
[0.041]** [0.043]

Practice -0.208 -0.389 0.013 153
[0.094]** [0.076]***

Class plenary lecture -0.064 -0.055 0.754 153
[0.037]* [0.033]*

Class discussion 0.117 0.168 0.308 153
[0.058]** [0.055]***

Work in groups 0.010 -0.054 0.070 153
[0.043] [0.035]

Work in pairs 0.010 0.004 0.870 153
[0.032] [0.027]

Work individually -0.073 -0.062 0.912 153
[0.059] [0.060]

Active engagement in class 0.028 0.079 0.210 4052
[0.047] [0.034]**

Classroom activity 0.121 0.166 0.292 4157
[0.044]*** [0.038]***

Math prescribed learning practices 0.300 0.602 0.121 153
(Student) [0.253] [0.207]***

Math prescribed teaching practices 0.362 0.513 0.414 153
(Teacher) [0.234] [0.201]**

OLS coefficients and [s.e.] p-value 
of Wald 

that 
[1]=[2]

Sample 
Size

Note: Each row shows statistics for a different variable Yisj of individual (student, teacher or school) i, in 
strata s and in school j.  Columns [1]-[2] show the regression coefficients and the standard errors in 
square brackets corresponding to equation (2), a regression model which includes strata controls, 
individual controls (gender, age, mom education, books, SAT), teacher controls (gender, age, experience) 
and school controls (# students in 7th grade, # classrooms in 7th grade, Lab in school, region dummies). 
Standard errors are clustered at the school level. *** p<0.01, ** p<0.05, * p<0.1. Column [3] shows the 
p-value of a Wald test that coefficients [1] = [2]. Column [4] shows the sample size.

Table 6: Time Allocation and Class Dynamics
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Active 
Learning

Active 
Learning 

&Technology
[1] [2] [3] [4]

Geometry score -0.171 -0.247 0.272 4157
[0.080]** [0.081]***

Geometry score (Basic skills) -0.142 -0.209 0.286 4157
[0.079]* [0.080]***

Geometry score (Higher-order skills) -0.126 -0.204 0.122 4157
[0.054]** [0.055]***

Dependent Variable: Geometry Score 
Teacher: (A) Low experience -0.317 -0.312 0.929 2182

[0.136]** [0.126]**

(B) High experience 0.001 -0.152 0.172 1862
[0.110] [0.067]**

(C) Low quality -0.147 -0.216 0.148 1929

[0.066]** [0.063]***

(D) High quality -0.139 -0.246 0.159 1867

[0.123] [0.079]***

Student: (E) Low skilled -0.041 -0.144 0.125 1658
[0.080] [0.066]**

(F) High skilled -0.248 -0.257 0.981 1620
[0.122]** [0.113]**

Samples of low/high ability students, low/high ability teachers, low/high quality teachers are described in 
Section 7.

Sample 
Size

Table 7: Geometry Test Results

Note: Each row shows statistics for a different variable Yisj of individual (student, teacher or school) i, in 
strata s and in school j.  Columns [1]-[2] show the regression coefficients and the standard errors in square 
brackets corresponding to equation (2), a regression model which includes strata controls, individual controls 
(gender, age, mom education, books, SAT), teacher controls (gender, age, experience) and school controls (# 
students in 7th grade, # classrooms in 7th grade, Lab in school, region dummies). Standard errors are clustered 
at the school level. *** p<0.01, ** p<0.05, * p<0.1. Column [3] shows the p-value of a Wald test that 
coefficients [1] = [2]. Column [4] shows the sample size.

OLS coefficients and [s.e.] p-value 
of Wald 

that 
[1]=[2]
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Active 
Learning

Active 
Learning 

&Technology
[1] [2] [3] [4]

(A) Access to new ideas 0.187 0.374 0.356 184
[0.262] [0.199]*

(B) Innovation 0.232 0.076 0.423 184
[0.220] [0.171]

(C) Reflective dialogue 0.302 0.417 0.453 185
[0.212] [0.197]**

(D) Quality of teacher-students interactions -0.840 -0.651 0.672 153
[0.384]** [0.256]**

(E) Teaching efficacy -0.198 -0.213 0.946 187
[0.178] [0.162]

Teacher Innovation Scale (A+B+C) 0.241 0.289 0.139 184
[0.165] [0.142]**

Teacher Mediation Scale (D+E) -0.519 -0.432 0.013 153
[0.208]** [0.154]***

p-value 
of Wald 

that 
[1]=[2]

Sample 
Size

Note: Each row shows statistics for a different variable Yisj of individual (student, teacher or school) i, in strata 
s and in school j.  Columns [1]-[2] show the regression coefficients and the standard errors in square brackets 
corresponding to equation (2), a regression model which includes strata controls, individual controls (gender, 
age, mom education, books, SAT), teacher controls (gender, age, experience) and school controls (# students in 
7th grade, # classrooms in 7th grade, Lab in school, region dummies). Standard errors are clustered at the school 
level. *** p<0.01, ** p<0.05, * p<0.1. Column [3] shows the p-value of a Wald test that coefficients [1] = [2]. 
Column [4] shows the sample size.

Table 8: Teachers Attitudes and Quality of Interactions
OLS coefficients and [s.e.]
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Active 
Learning

Active 
Learning 

&Technology
[1] [2] [3] [4]

(A) Bad behavior 0.089 0.071 0.619 4030
[0.056] [0.054]

(B) Avoid novelty 0.072 0.085 0.781 3943
[0.053] [0.048]*

(C) Academic engagement -0.040 0.015 0.353 3973
[0.075] [0.066]

(D) Academic press -0.011 -0.033 0.597 3917

[0.048] [0.039]

(E) Preference for math -0.140 -0.055 0.162 3970
[0.077]* [0.059]

Student Combined Scale (-A-B+C+D+E) -0.070 -0.046 0.081 3970
[0.041]* [0.038]

p-value 
of Wald 

that 
[1]=[2]

Sample 
Size

OLS coefficients and [s.e.]
Table 9: Student Effort

Note: Each row shows statistics for a different variable Yisj of individual (student, teacher or school) i, in 
strata s and in school j.  Columns [1]-[2] show the regression coefficients and the standard errors in square 
brackets corresponding to equation (2), a regression model which includes strata controls, individual controls 
(gender, age, mom education, books, SAT), teacher controls (gender, age, experience) and school controls (# 
students in 7th grade, # classrooms in 7th grade, Lab in school, region dummies). Standard errors are clustered 
at the school level. *** p<0.01, ** p<0.05, * p<0.1. Column [3] shows the p-value of a Wald test that 
coefficients [1] = [2]. Column [4] shows the sample size.
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Figure 1: Robustness of results on scores

Note: The y-axis shows the treatment effect of a standardized geometry test score on treatment dummies estimated following equation (2). Panel A shows estimates obtained 
by removing items that belong to one (syllabus) section at a time. Panel B shows estimates obtained by removing items of one difficulty group at a time. Panel C shows 
estimates obtained by removing schools in one strata at a time.
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Figure 2: Geometry Test Result by Technology 

Note: The middle dot is the OLS coefficient estimated following equation (2), the vertical bars are 95% 
confidence interval.
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Figure 3: Treatment Effect Heterogeneity (Geometry Score)

Note: Each line presents a local polynomial regression of the geometry test-scores (y-axis) --controlling for strata fixed effects-- on a mediating variable (x-axis): teacher experience (panel A), teacher quality (panel B), 
and student pre-treatment SAT (panel C). The red dashed line is for the control group, the black solid line is for those students in the active learning condition, and the grey long-dashed line is for those students in 
the three technology groups. At the bottom of the graph we overlap a histogram of the mediating variable and the vertical line marks the median of the mediating variable distribution (to save space we do not plot the 
frequency on any axis). The local polynomial regressions were estimated using an Epanechnikov with a bandwidth of 0.15 (panel A), 2 (panel B) and 0.10 (panel C).
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Figure 4: Geometry Unit Progression

Note: The y-axis shows the proportion of teachers that completed a given geometry unit (x-axis). Each panel shows this for a different teacher log and point in the calendar (June, July and August).
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Figure 5: Treatment Effect Heterogeneity (Students Scales)

Note: Each line presents a local polynomial regression of a student scale (y-axis) --controlling for strata fixed effects-- on student pre-treatment SAT (x-axis). The red 
dashed line is for the control group, the black solid line is for those students in the active learning condition, and the grey long-dashed line is for those students in the 
three technology groups. At the bottom of the graph we overlap a histogram of the mediating variable and the vertical line marks the median of the mediating variable 
distribution  (to save space we do not plot the frequency on any axis). The local polynomial regressions were estimated using an Epanechnikov with a bandwidth of 
0.15.
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