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ABSTRACT

Fundamentally, this paper is about the value of information. 

Whenever a cost-benefit analysis has to be undertaken using benefits
that are estimated from household survey data the size of the survey
sample must be specified. The most obvious case is the valuation of
environmental amenity improvements through contingent valuation (CV)
surveys of willingness to pay. One of the first questions that has to be
answered in the survey design process is “How many subjects should be
interviewed?” The answer can have significant implications for the cost
of project preparation, since in Latin America and the Caribbean costs
per interview can range from US$20 to US$100. 

Traditionally, the sample size question has been answered in an
unsatisfactory way by either dividing an exogenously fixed survey
budget by the cost per interview or by employing some variant of a
standard statistical tolerance interval formula. Neither of these
approaches can balance the gains to additional sampling effort against
the extra interviewing costs. One might just as well use a dart board or
pick a random number between 100 and 10,000.  

The answer is not to be found in the environmental economics literature.
But, it can be developed by adapting a Bayesian decision analysis
approach from business statistics. The paper explains and illustrates,
with a worked example, the rationale for and mechanics of a sequential
Bayesian optimization technique, which is only applicable when there is
some monetary payoff to alternative courses of action that can be linked
to the sample data. In this sense, unlike pure valuation studies that are
unconnected to a policy decision, investigators who use contingent
valuation results directly in cost-benefit analysis have a hidden
advantage that can be exploited to optimize the sample size. The
advantage lies in  the link between willingness to pay and the decision
variable, the net present value of the prospective investment.

The core objective of the paper is practical. Readers without a statistical
background can easily implement the method. Annexes are provided to
show how, with just six key pieces of information, anyone can solve the
optimal sample size problem in a spreadsheet. An automated spreadsheet
algorithm is available from the authors on request. To run the program
all the user has to do is enter the key data and then activate a macro that
automatically computes the optimum number of additional observations
needed to augment any initial “small” survey sample.
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1 In the only known internal IDB source discussing sample size, Vaughan (1994) looks at the size of a sample of
projects needed to confirm the overall economic viability of so-called “multiple works programs” which are designed to finance a
group of similar works, of which only a subset is exposed to ex-ante economic analysis. The issue of CV sample size is not
addressed therein. At a training workshop on CV presented by the authors at the World Bank in June 1999, the sample size
question was raised by the audience, but we were unable to provide a wholly satisfactory answer beyond intuitively suggesting
that samples between 500 and 1000 usable observations probably would be sufficient.

THE INVESTMENT PROJECT ANALYSIS CONTEXT 

Many multilateral financial institutions require that investment project proposals be screened using economic
analysis, preferably of the cost-benefit (CB) rather than the cost-effectiveness variety. In recent years,
contingent valuation (CV) has become the preferred route in some of these institutions for estimating the
benefits yielded by investments aimed at improving ambient air or water quality (Ardila et al. 1998). An
issue that is repeatedly raised by those responsible for actually doing the analysis (staff economists and their
counterparts in the executing agencies of prospective borrowing countries) is “How many subjects should
be interviewed in a CV survey to produce a reliable estimate of per capita or per household benefits?”

It would be hard to disagree in principle with Mitchell and Carson’s (1989, p. 223) admonition that “No
matter how realistic the scenario, the data collected from even the best contingent valuation survey
instruments are useless unless sample statistics of sufficient quality for policy purposes can be obtained.”
In practice this message is often lost in decision-making, even when investments of a quarter of a billion
dollars or more are at stake. In testimony to its obscurity, no guidelines on sample size selection exist in the
economic analysis protocols of the Inter-American Development Bank, and our conversations with
economists at sister lending institutions suggest that they are perplexed as well.1 

In these days of low overheads and limited budgets in public sector and international institutions involved
in grant or loan financing of projects and programs, management is justifiably reluctant to overspend on
project preparation. One high level IDB executive with considerable expertise in economic analysis remarked
to the authors that he suspected, without looking deeper into the question, that CV samples in the area of 250
interviews would probably be sufficient for a reliable CB project appraisal. The literature contains little that
refutes this conventional wisdom. 

Standard Sub-optimal Approaches

In their seminal book on CV, Mitchell and Carson (1989) suggest that, based on a simple statistical tolerance
formula, sample sizes between 200 and 2500 are probably appropriate (Chapter 10, footnote 13, p. 225),
assuming a best guess of 2.0 for the coefficient of variation which drives the calculation. The academic
literature on CV has little more useful to say. Instead, and perhaps quite realistically, it devotes a great deal
of effort to algorithms for figuring out how many bid groups should be used in a referendum CV survey, and
how many interviews should be allocated to each, taking the total sample size as exogenously set by the deus
ex machina of research funding limits (Cooper 1993, p. 28). 

Given the paucity of guidance, determining an appropriate sample size is often handled loosely by everyday
practitioners in government and international agencies, whose work is often underfunded and fast-tracked.
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Budget considerations play a predominant role. But, does it make any sense to divide a predetermined budget
amount (net of fixed costs) by the cost per interview to get to a CV survey sample size? What determines the
level of the budget for analysis and CV surveying? Yet, is it any more legitimate to challenge any budget
ceiling on the basis of a statistical tolerance formula that says “We need N interviews to produce a sample
estimate of mean willingness to pay (WTP) that comes within ± X percent of the true population mean with
(1-") percent confidence?” There is no particularly strong rationale for choosing a percentage difference of,
say, 5% rather than 10% between the true population willingness to pay and the sample mean, or any reason
other than custom for selecting a significance level, ", of 1% rather than 5%. 

Arguments for augmented survey budgets along these lines are unlikely to be persuasive to those who must
allocate limited resources. Without a criterion that balances the value of additional information provided by
larger samples with the cost of collecting them, the only recourse is to fall back on rough statistical rules of
thumb (Mitchell and Carson 1989) or do one’s best with whatever funds are made available. 

Seeking Optimality

The immediate objective of much CV work is valuation per se, that is, estimation of the value of natural
assets like protected areas, or the benefits of ambient quality improvement. While these CV values may serve
as inputs into the assessment of the prospective monetary gains and losses of alternative investment decisions
or courses of environmental policy action, that subsequent decision analysis is often someone else’s
responsibility once the job of the CV experts is done. When the CV exercise is effectively sealed off from
the policy or investment decision step, CV researchers working in isolation have no recourse but to satisfice
when it comes to sample size, choosing a size N that somehow is defensible or appears reasonable. However,
investigators using contingent valuation results directly in cost-benefit analysis have a hidden advantage that
can be exploited to reach a much more persuasive conclusion about the optimal CV sample size. This paper
explains how the value of additional sample information can be quantified (either approximately or precisely)
and balanced against the cost of obtaining it. That value is closely related to the way the distribution of the
investment’s expected net present value reacts to the size of a CV sample. 

The optimal sample size approaches explained herein have their origins in Schlaifer’s (1959, 1961) Bayesian
decision analysis approach, which is discussed in an accessible way by a number of standard texts on the use
of statistics in business decision-making (Bonini et al.1997; Jedamus and Frame 1969; Pfaffenberger and
Patterson 1987; Lapin 1994; Winkler 1972). For a rapid Bayesian analysis, an approximate normal
probability distribution for NPV can be obtained by constructing a simple a linear relation between it and
sample estimates of the mean WTP and its standard error. Larger CV samples reduce the uncertainty about
willingness to pay (reduce the standard error of mean WTP) and about NPV as well, where the compression
in variance (uncertainty) with increasing sample size is transmitted through the linear relationship. By
monetizing variance reduction in this way, the marginal costs of expanding sample sizes can be compared
to the marginal benefits of the additional information they contain to reach an optimal sample size decision.

Alternatively, the linearity assumption linking NPV to mean WTP may not hold, and NPV may not be
normally distributed even if WTP is, because other random influences on NPV skew the distribution of the
outcome. A more precise Monte Carlo risk analysis in the Bayesian mold can be employed to characterize
the way the empirically generated probability distribution of NPV reacts to better information on WTP to
verify the approximate optimum based on the normality assumption. 



2 Contact William J. Vaughan by e-mail at williamv@iadb.org and ask for the “Sample Size Template”. Indicate
whether you will be using Quattro Pro versions 6, 7 & 8 or Quat tro Pro Version 9. The template is not  available in Microsoft
Excel.
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Optimal Results Without Pain 

Anyone can implement the method developed in the remainder of this paper using a spreadsheet algorithm
in Quattro Pro that is available from the authors on request.2 The optimization routine presumes that an initial
small survey sample has already been taken, and asks whether it would be optimal to add to it in a second
round of sampling. To run the program all the user has to do is click on an “Optimizer Macro” button to
compute the optimum number of additional observations needed to augment an initial “small” survey, if any.
The data entry and output results forms are shown in Table 1. Annex 3 to this paper contains the full set of
spreadsheet instructions. 

Table 1. Quattro Pro Macro: Data Input Form and Optimal Results Summary Output

DATA ENTRY INSTRUCTIONS:

STEP I. ENTER THE INITIAL SMALL SAMPLE DATA Units Data Entry
ENTER DATA IN
BOX AT LEFT

Size of Initial “Small” Sample? # of Cases 250

Sample Mean Willingness to Pay? $/Household/Unit Time $7.47

Variance of Sample Mean? $/Household/Unit Time 0.70

Sampling Cost per Household Interview? $/Case $89.00

 STEP II. SPECIFY THE LINEAR CVPI FUNCTION RELATING NPV TO WTP ( NPV = " + $ CMEAN WTP)

Intercept (") ?
$ Total Discounted Costs

[Enter as Negative #]
-$594,653,984.00

Slope ($) ?
# of Beneficiaries

[Total Discounted]
100,988,487

AND THEN 

RESULTS

STANDARD ERRORS OF NPV AWAY FROM NPV = 0 1.89

SHOULD A SECOND SAMPLE BE TAKEN TO AUGMENT THE INITIAL SAMPLE? Probably Yes

IF "Yes" CLICK ON THE BUTTON AT THE RIGHT TO RUN THE OPTIMIZER MACRO
OPTIMIZER

MACRO

HIT THE OPTIMIZER
BUTTON

Approximate Sample Size (Used as a Starting Value for Optimization) 2,793

EXACT OPTIMUM  2,378
PROGRAM

RETURNS THE
OPTIMUM

Note: This routine assumes the analyst has no prior knowledge about average WTP or its variance
beyond what the initial "small" sample reveals. Neither the authors nor the Inter-American Development
Bank warranty this program or the methods it employs.

Only six pieces of input information are needed: (1) the size of the initial small CV survey sample, (2) the
expected value (mean) of willingness to pay (WTP) extracted from that sample, (3) the variance of mean
WTP, (4) the average (equals marginal) cost of collecting a single survey observation, (5) the intercept of



3 The figure assumes an initial small sample of 250 cases has already been taken and shows how many cases should be
added to it. To generate the figure, the baseline deterministic cost and energy benefit flows from the case study example
discussed in Vaughan et al. (1999, 2000a, 2000b,and 2000c)  were combined with mean WTP estimates that were randomly
drawn from a uniform distribution covering R$5.89 to R$13.00, which spans most of the range of the estimates discussed in
Vaughan et al. 1999 and Vaughan et al. 2000a, 2000b, and 2000c. The variance of each mean was derived from a random draw
of values of the coefficient of variation between 0.75 and 6.0, following Mitchell and Carson (1989, p. 225). No prior
information about the mean WTP or its variance was incorporated, in contrast with Table 1, which includes some runs with tight
priors.
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Figure 1. Sample Size Depends on Project Prospects

a linear function (called the CVPI function) relating NPV to WTP and (6) the slope of the linear function.
All but the last two are obvious. The intercept and slope of the CVPI function are also easy to get, without
doing a complex cost-benefit analysis beforehand. The intercept is just the discounted sum of project
investment and operating costs (net of any non-CV benefits, if they exist). The slope is just the discounted
sum of the number of beneficiaries to whom mean WTP benefits from the CV survey are attributed.
Subsequent sections develop the rationale for the proposed method and explain each step in detail.  

Anticipating the Optimal Results for a Case Study Example  

It is always difficult and perhaps even dangerous to make generalizations about optimal sample size. The best
sample size is always case specif ic because it  depends on the cost and benefit flows of the prospective
investment under consideration. Yet there is a general pattern: the better the project appears ex-ante the
smaller the CV sample size needed to obtain the benefit estimates that justify it. Given the investment cost
and return data for the worked example used later, the total sample size required depends critically on just
two pieces of information: the standardized distance of expected NPV from zero and the unit variable cost
of collecting a single WTP survey response. In our experience in Latin America and the Caribbean, sampling
costs will be high if an interview costs around US$100, and more typical if interviews cost about US$20 to
US$35 each.

The remainder of this paper uses actual data from a case study to illustrate the general principle that the
optimal sample size for CV surveys is a decreasing function of how good the project appears to be ex-ante.
The results are based on the benefits and costs of a proposed project to clean up the Tietê River in São Paulo,
Brazil (for details about the project see Russell et al. forthcoming and Vaughan et al. 1999, 2000a, 2000b,

2000c).3 

Figure 1 shows the results of calculating the
optimal sample size for 100 randomly drawn
values of mean WTP and its standard error,
assuming a high cost of sampling of R$89
(US$100) per interview. The figure shows that
investments with a high likelihood of success
(expected NPV more than two and one half
standard errors from zero because the mean WTP
is high and the variance of the mean is low)
require very little sampling effort beyond taking
a small sample of 250 or so observations. 

An ex-ante speculation about the chances that a
project will succeed measures the degree of



4 To arrive at these percentages, the normal distribution in question must be centered on the expectation of NPV, not
on zero.

5 The minimum sample size is 250 cases because a small initial sample is needed to jump start the optimization routine.
The net benefits of increasing the sample size above 250 cases rise initially at a rapid rate and then become almost flat over a
wide span (± 20 to 30%) around the optimum. Consequently, the sample sizes in Table 2 are termed near optimal because the
additional cases needed beyond the minimum of 250 have been scaled back to 70% of the optimum following Schlaifer (1961,
Figure 21.5, p. 337); they are lower bound ranges.
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confidence. Extremely promising projects have large positive expected net present values (NPVs), while
marginal projects have NPVs near zero. By dividing the expected net discounted benefits of any project by
the standard error of the mean NPV any investment can be put on a commensurate scale that has a ready
interpretation from basic statistics. Assuming approximate normality in the distribution around the estimate
of expected NPV, projects whose standardized NPV is more than 2.33 standard normal deviates from zero
have a 99% chance of being successful, projects that are 1.28 deviates above zero have a 90% chance of
success, and so on down the line. An investment whose standardized NPV is expected to be only slightly
above the critical value of zero will fail half the time so it only has a 50 percent chance of success.4 

A compact summary of the results of a large number of other Bayesian optimization exercises not shown in
Figure 1 appears in Table 2.

Table 2. Range of Nearly Optimal Total Sample Sizes from the Tietê Case Study Data

Chances of
Project Success

Interview Cost in Latin America

Over 99%

[>2.33 S.E]

90% to 99%

[1.28 to 2.33 S.E.]

50% to 90%

[0 to 1.28 S.E.]

High (Brazil: US$ 100 per Interview) 250 to 1150 250 to 3300 1600 to 8600

Typical (US$35 per Interview) 250 to 2000 250 to 5200 3000 to 14400

The optimal sample sizes 5 reported for variations on the case study data alone cannot be generalized to other
situations. But exact optimal sample size answers can easily be found for any specific investment project
using the optimization algorithm supplied in Annex 3. The interesting characteristic demonstrated by the
results from the case study is that no specific sample size, either large or small, is desirable across the gamut
of situations.

Before getting involved in the details of the optimization approach, several variants of the standard classical
method are illustrated next using contingent valuation survey data that was collected in 1998 to estimate the
water pollution control benefits of the Tietê project. The results of exploring several different sets of
assumptions with the classical sample size selection method reveal just how little guidance it actually
provides. Then, small sample means of WTP and their variances are constructed from the data before moving
on to explain and apply the principles of sequential optimal sample size determination using data from a
small initial sample as a point of departure. 
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THE STANDARD APPROACH TO SURVEY SAMPLE SIZE
DETERMINATION: VARIATIONS ON THE THEME

For its referendum CV questionnaire to estimate willingness to pay for improved water quality in the Tietê
River, the original project analysis drew a sample based on household characteristics drawn from a 1996
survey of households in the Saõ Paulo Metropolitan Area (SPMA). The strategy was to represent the
population of São Paulo in terms of the factors thought to have a strong influence on willingness to pay. In
theory such factors might include the household’s income and its perception of odors from the river,
environmental awareness, and education. Of these, the Census only had information on income and
education, which are highly correlated. 

According to the Census, the average household income in the SPMA is R$828/month with a standard
deviation of R$702. Using a 95% confidence interval and a 10% sampling error, the original analysts figured
that a sample of 276 homes would be required. The necessary sample size was initially calculated based on
the amount of tolerable error in the sample estimate of mean income rather than mean WTP (which was
unknown), using a standard statistical formula that acknowledges only Type I error (e.g. Paffenberger and
Patterson 1987, p. 389).

The standard formula used was:

N = [z"/2 F/E]2 = [(1.96*702) / 82.8]2 = 276

where:
 N  = desired sample size

z   =   the 95% confidence interval statistic (1.96) at significance level " = 5%, 2 sided test.
F  = standard deviation of income (R$702).
E   = acceptable error (R$82.80) in the sample estimate of the population mean WTP obtained as

one-tenth of census estimate of average household income of R$828 (i.e. a 10% error).

Note that the variable of interest is household willingness to pay (WTP), not income, so the above application
of the standard sample size formula only holds if  the mean and standard deviation of WTP bear a fixed
proportional relationship to the mean and standard deviation of income, which is unlikely. 

In a second line of attack, the analyst might try to formulate explicit prior beliefs about the population mean
and standard deviation based on historical experience and proceed from there. For instance, assume a simple
distribution for willingness to pay, such as the triangular. The mean and standard deviation can easily be
obtained from this distribution given a guess about just three values; the minimum, the most likely, and the
maximum WTP (Vose 1996, p.88):

Mean, Triangular = (a + b + c) / 3 

Variance, Triangular = (a2 + b2 + c2 - ab - ac - bc) / 18
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where:
a = Minimum; b = Mode; c = Maximum

Establishing the minimum WTP is easy if the investment improves utility or at least does no harm; so it can
be safely set to zero. For the maximum, we know from experience that, on average, people are willing to pay
about three to four percent of income for sewer connections and that the willingness to pay for ambient water
quality is, on average, less than one-third of that (Ardila et al.1998). So the maximum of WTP could be set
to what households are willing to pay for sewer connections—around 3% of income. If income is
approximately right-triangular distributed the maximum income is three times the mean of R$828, or
R$2484. Then, the highest individual observation of WTP would be 3% of R$2484, or R$74.52. The modal
value is more difficult, but Choe et al. (1996) found that willingness to pay for water pollution control in the
Philippines was only about 1 % of income, which is consistent with our experience in Latin America (Ardila
et al. 1998), yielding a most likely value of R$8.28. Then, from the triangular distribution formulas the prior
mean WTP becomes R$27.60, the variance R$346.93, and the standard deviation, F, R$18.63.

As before, if the sample is to come within ± 10% of the mean, E = R$2.76. Then:

N= [z"/2 F/E]2 = [(1.96*18.63) / 2.76]2 = 175

This recommendation for a very small sample is based on ostensibly reasonable guesses. As we will see later,
these prior estimates turn out to be extremely poor when compared to the mean and standard deviation of the
actual sample data. 

For another variant of the same game, suppose we believe the average WTP per household is 1% of income,
or R$8.28 and that the most frequent response (the mode) is zero. This yields a right triangular distribution
with a=0 and b=0. The implied maximum WTP, c, is 3 times R$8.28, or R$24.84 and the variance is just
c2/18, or R$34.28, yielding F = R$5.85. Again, if the sample is to come within ± 10% of the mean, E =
R$0.83 and another recommendation for a small sample results:

N= [z"/2 F/E]2 = [(1.96*5.85) / 0.83]2 = 191

Finally, for a fourth  route, Mitchell and Carson (1988, p.224) suggest a clever manipulation of the standard
formula above that obviates the need to guess about F or the absolute magnitude of acceptable error in the
mean of WTP. Instead, a guess about the ratio of the standard deviation to the population mean (the
Coefficient of Variation, V) is required; Mitchell and Carson suggest a value for V of about 2. At the "=5%
level, using V=2 and ) of 10% as an acceptable difference between the true population mean WTP and the
sample estimate:

N= [ (z"/2 V) / ) ]2 = [(1.96•2.0) / 0.10]2 = 1537

The four standard routes to sample size determination illustrated above lead to quite different answers
because the first three implicitly assume the value of V is less than 1.0 and therefore recommend small
samples (i.e. the V values are R$702/R$828 = 0.85; R$18.63/R$27.60 = 0.68; and R$5.85/R$8.28 = 0.71)
rather than the value of 2.0 reflecting Mitchell and Carson’s review of actual contingent valuation surveys
in the 1980s, most of which were undertaken in developed countries. 

The guessing game played above could go on ad-infinitum without ever producing a firm conclusion about
the reliable sample size needed for any particular CV survey. Although it would seem to suggest that, in



6 This value was equal to $114 Brazilian reals in 1998. For the loss-cost exercise it must be put on equal terms with the
value of information, which is shadow priced in the project analysis. Multiplying it by the shadow price of non-tradeable inputs
of 0.78 gives a variable (equal to marginal) cost per observation of R$88.92. CV surveys in Latin America usually do not cost
this much; costs around US$30 per case have typically been quoted (Ardila et. al. 1998).
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developing country applications, small samples will suffice, that is an erroneous generalization. The rest of
this paper will show that small samples sometimes suffice, but the classical method fails to isolate the
circumstances under which it is safe to take a small CV survey sample rather than a big one. 

In any event, the first result, 276 households, was not used for the Tietê referendum CV survey. Neither were
the second or third of 175 and 191 cases or the highest estimate of 1537 from Mitchell and Carson’s route.
Instead 600 interviews were actually undertaken for the project analysis, split between two sub-samples to
account for the distance effect on WTP (184 households living in districts bordering the polluted river and
416 living farther away and presumably less affected by its noxious odors and health risks). Even though the
variable cost of each interview, US$100, was fairly expensive,6 the available budget permitted an expenditure
of US$60,000 to take a larger sample and get more precise results than the lowest estimate of US$17,500
could provide, but not aim for the tighter variances from 1537 interviews that could be purchased for
US$153,700. The question is, which of the sample size estimates, in retrospect, comes closer to the optimal
size? The answer lies beyond the quick and convenient, but imprecise and arbitrary, classical method.



7 The parametric approach requires that a conditional cumulative density (or survival) function be statistically fit to the
data and, subsequently, an expected value extracted using formulae that are functions of the estimated parameters of that assumed
density (usually Logistic, see Vaughan et al. 1999, 2000a, 2000b, 2000c). Lacking analytical formulas, the mean standard error
must be found either via the delta method (a second-order Taylor series approximation of an unknown variance function which
itself depends on the standard errors of the survival function parameter estimates) or by bootstrapping. 

8 The actual 600 observation referendum CV sample from our case study was unbalanced because it undersampled
households living in districts that are contiguous to the river (31 % in the sample, 61 % from the metropolitan area census). Since
households living in districts bordering the river are willing to pay significantly more on average for improved water quality than
households in noncontiguous districts (R$6.07 per household per month versus R$4.51) the mean from the grand sample is a
biased estimate of the population’s average willingness to pay. We corrected for this by randomly drawing 250 observations from
the grand sample using the constraint of the census proportions, which meant that 152 of the 184 available households living
close to the river were included in the small sample, along with 98 of the 416 families living in more distant districts.  

9 The variance estimates in the table were independently verified by simulation, drawing from separate binomial
distributions reflecting the number of “No” answers in each bid group and repeatedly calculating the mean 5000 times. The
standard errors of the means matched those from the analytical formulas provided in Annex 1. For the balance of the discussion,
the approximately equal allocation of cases across bid levels is taken as given, ignoring the possibilities for variance reduction at
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STARTING TOWARDS AN OPTIMAL SOLUTION: SMALL SAMPLE
MEANS AND THEIR STANDARD ERRORS

The next step toward an optimal answer begins with the collection of an initial small CV survey sample (say,
250 cases) and the calculation of the mean WTP and its variance. With this information in hand, the
researcher can then proceed to ask whether additional sample information would be desirable, following the
optimization procedure explained subsequently.

But first, initial estimates that characterize the distribution of WTP are needed. In the case of WTP, the
standard error of the mean can, in principle, be reduced by increasing the sample size. However, estimation
of this effect using conventional parametric techniques on referendum CV data is problematic, since
analytical formulas are generally lacking.7 However, the nonparametric estimators (McConnell 1995; Haab
and McConnell 1997, Vaughan et al. 1999, Vaughan et al. 2000a, 2000b, 2000c) directly relate the standard
errors of lower bound, intermediate or upper bound mean WTP estimates to sample size, and these formulae
can be exploited to help compute the optimal sample size (see Annex 1). Alternatively, an initial open-ended
rather than referendum CV survey could be conducted and the mean and its standard error calculated directly
from the explicitly stated WTPs of the respondents.

To demonstrate, a balanced random sub-sample of 250 observations was drawn from the actual 600
observation grand sample of Tietê CV survey interviews.8 We chose a size of 250 in order to have a
reasonable minimum number of observations in each of the five bid groups in the referendum. Unlike the
grand sample, the small sub-sample was deliberately drawn to be representative of the spatial distribution
of the respondents, so the distinction between the WTPs of residents living close to and far from the river
can be dropped, which simplifies the sample size selection problem. Table 3 presents the small sample
estimates of the nonparametric means and their variances, and Annex 1 provides the details.9 Our prior



any given total sample size that might be achieved by concentrating the bulk of the sample in the region of bid levels where Fj. =
0.5. 

10 See Vaughan et al.1999 for a review of parametric versus nonparametric means.
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guesses for mean WTP and the population standard deviation in the section on the standard approach did not
turn out to be very prescient, although setting the average WTP at 1% of income comes close (R$8.28).

Table 3. Small Sample Nonparametric Means

Estimator Mean
Variance
of Mean

Standard
Error of

Mean

Population
Standard

Deviation a

Turnbull Lower Bound 5.75 0.45 0.67 10.61
Weighted Turnbull (0.75) and Paasche (0.25) 7.47 0.70 0.84 13.23

Kriström’s Intermediate 9.20 1.02 1.01 15.97
Paasche Upper Bound 12.66  1.88 1.37 21.68

Note:
a. Approximation from the square root of the product of the variance of the mean and the sample size, 250.

To jump the gun a bit, what would the classical method recommend if our guesses for : and F were exactly
equal to what the actual sample reveals? The Turnbull mean WTP is R$5.75 and the sample estimate of the
population standard deviation is R$10.61 (the standard error of the mean multiplied by the square root of
250). Applying the familiar formula, the recommended sample size under these nearly perfect guesses would
be large indeed, and very close to what Mitchell and Carson’s approach recommends: 

N= [z"/2 F/E]2 = [(1.96*10.61) / 0.58]2 = 1286

Similar calculations for the other means in Table 3 also yield sample sizes of around 1200 cases. 

Unfortunately, following the recommendation of the classical method, even if it is based on actual sample
information, is potentially misleading. The optimal Bayesian decision under the baseline configuration of
net project benefits and sampling costs, assuming a mean WTP of R$7.47, recommends a sample of over
2000 observations, as demonstrated below. In short, the standard classical method is no more useful than a
dart board. On the other hand, the optimization approach is more useful, but the optimal solution is extremely
sensitive to the choice of nonparametric mean, which is ultimately a subjective decision.10 For the balance
of this paper, our preferred mean is the intermediate nonparametric mean composed of a weighted
combination of the Turnbull lower bound mean (75% weight) and the Paasche upper bound mean (25%
weight).



11 In Winkler’s (1972, p. 297) words, “This type of decision is called a preposterior decision because it involves the
potential posterior distributions following the proposed sample.” Winkler notes that preposterior analysis can be carried out
repeatedly in sequential decision-making. Our proposal involves a two-step sequence of taking an initial “small” sample and then
doing a preposterior analysis that looks for the optimal number of surveys to add to the initial sample, which can either turn out
to be zero or some positive number. Of course, in some circumstances the initial sample size itself may be suboptimal (too large),
but then there will be no need to add to it. 
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PRELIMINARIES ON PROJECT RISK, THE VALUE OF INFORMATION
AND LOSS-COST MINIMIZATION 

The analogues of the decision analysis approach to sample design in general (Schlaifer 1959, 1961) and in
statistical quality control applications in particular (Vaughan and Russell 1984, Russell, Harrington and
Vaughan 1986) provide the keys to unlocking the optimal CV sample size problem. Somewhat loosely stated,
the core concept involves finding the sample size that minimizes the sum of sampling costs and expected
losses. 

The pure form of the optimal sample size approach involves Bayesian decision analysis and expands on the
concept of prior information that was employed above in the second and third variants of the standard
approach. It combines prior subjective characterizations of the probability distribution of mean willingness
to pay with data from an initial “small” sample of, say, 250 cases to decide whether an additional round of
sampling should be undertaken and, if so, how many subjects should be interviewed in that second round.
Schlaifer (1961) calls this Bayesian “preposterior” decision-making about the desirable sample size because
a decision can be reached on the basis of partial information before actually doing any additional sampling.11

Expected Gains and Losses

In the terminology of decision analysis, the CB decision is a two-action problem with infinite states of nature.
The investment proposal can either be accepted if in expectation it will yield a positive discounted net cash
flow above the break-even point of NPV equal to zero, or rejected if it does not. Because the many influences
on NPV are random variables, so is NPV. Therefore, at least conceptually, there are an infinite number of
possible net cash flow values, each with its own probability of occurrence.

CB risk analysis accommodates the variance in benefits and other variables, so the risk-neutral decision rule
(Brent 1996) is clearer than it would be in a deterministic analysis that inconsistently combines extreme
values for some variables with various measures of central tendency for others. The rule is to proceed with
a capital investment project if the expected value of its discounted stream of net benefits, E(NPV), is non-
negative; but if the expectation of discounted net benefits is negative the project proposal is economically
infeasible. In the probabilistic context of risk analysis, following this expected value decision rule has a
quantifiable cost called the cost of uncertainty. 

The cost of uncertainty is the expected opportunity loss of making the decision determined by the decision
rule. That is, if the expectation E(NPV) taken over the entire NPV distribution is non-negative, the



12 Only if the probability distribution of NPV lies entirely in either the positive or negative domains will there be no
cost of uncertainty because you literally can’t go wrong; either an unattractive investment is unambiguously bad over the entire
range of NPV outcomes or no losses are possible because there is zero probability that NPV will fall below zero. In either of
these extreme situations, case-specific sample estimates of willingness to pay may not even be necessary. If extreme upper and
lower limits for willingness to pay can be posited a-priori via benefits transfer or other past experience, and the investment either
fails the CB test using the highest possible WTP or passes it using the lowest conceivable non-negative WTP value, the
investment decision can be made without incurring sampling costs.
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investment will be made. But if some portion of the NPV distribution falls below zero, actual losses in
specific instances are still possible. The cost of uncertainty can therefore be measured as the mean of that
portion of the NPV distribution truncated from above at zero (the average loss, given that a loss might indeed
occur), multiplied by the probability of a negative NPV occurring. If the project is not undertaken because
the expected value of NPV is negative, the investment will not be made, thus foregoing any possibility of
positive net returns. Symmetrically, the loss in this situation is the mean of that portion of the NPV
distribution truncated from below at zero (the average net gain foregone, given that a net gain might occur),
multiplied by the probability of a positive NPV occurring.12 The two opportunity loss situations are pictured
below. 

If the project is economically feasible its global mean NPV will be non-negative. The project will be
undertaken so the region of opportunity loss is from negative infinity (or the minimum possible NPV) to
zero:

Case I: Project Feasible: Correct Decision is to Invest

+))))))Region of Losses, NPV<0)))), +))))))))))))))))))    Region of Gains, NPV$0    )))))))))))),
| | | | |

-4 or Min NPV              E(NPV) | NPV<0                       0                                                                     E(NPV)                                  +4 or Max NPV

If the investment’s expected NPV is negative it should not be undertaken, thus foregoing some possible gains
lying in the region of opportunity loss from zero to plus infinity (or the maximum possible positive NPV):

Case II: Project Infeasible: Correct Decision is Not to Invest

+)))))))))))))))))))Region of Losses, NPV<0)))))))))))))), +)))) Region of Gains, NPV$0  ))))),
| | | | |

-4 or Min NPV                         E(NPV)                                                                                    0           E(NPV) | NPV $ 0                  +4 or Max
NPV

Table 4 provides more formal definitions of the decision criterion, the probability of opportunity loss, the
truncated mean loss and the cost of uncertainty. The cost of uncertainty (ELoss, I or ELoss, II in the table) is in
part a function of the amount of prior subjective and sample information size on hand when the options are
weighed to either invest immediately or wait and collect more information At the point after a small initial
sample of size N0 is taken (or even before when a prior guess is formed without any sampling at all) it
represents the most the investor would be willing to pay to gather more information and eliminate all
uncertainty about the project, which is why it is also called the expected value of perfect information, EVPI.

Additional sampling can never eliminate all uncertainty. But changes in ELoss, I (or ELoss, II) with increases in
sample size beyond the original small sample N0 provide a measure of the gross benefit of the second stage
of a sequential CV sampling scheme. Incremental CV samples with )N>0 reduce the standard error of the
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CV mean estimate of project benefits (WTP), which transmits into a reduction in both the truncated mean
loss in project NPV and the cumulative probability of that loss.

Table 4. Fundamental Definitions

Case I
Correct Decision: Invest

E(NPV)$ 0

Case II
Correct Decision: Don’t

Invest
E(NPV) < 0

Decision Criterion: Global Mean

NPV
                  4
E(NPV) = I NPVi C pi  d NPV 
                 -4

Probability of O pportunity L oss              0
FLoss I = I pi d NPV    
          -4 or Min

           +4 or Max

FLoss II = I pi d NPV   
             0

Truncated M ean Loss ET,I = E(NPV | NPV< 0)

     0
= {I NPVi * pi d NPV}/ FLoss I  
   -4 or Min

ET,II = E(NPV | NPV>0) 
  
     +4 or Max

= {I NPVi * pi d NPV}/ FLoss II 
      0

Cost of Uncertainty or Expected
Value of Perfect Information or
Expected Loss of a Terminal Actiona

ELoss, I  = ET,I  • FLoss I ELoss, II  = ET,II  • FLoss II

a. These terms all appear in the literature and they all mean essentially the same thing. It may seem unnecessarily roundabout
to express the cost of uncertainty as the product of a truncated mean and the fraction of the total probability distribution
lying in the region of opportunity loss. However, this is necessary given the way the information is produced by the
Crystal Ball Monte Carlo simulation routine we used to verify the approximate solutions in the worked examples. 

b. The probability of occurrence of the ith NPV is represented as pi in the table.

Value of Information: Variance Reduction Through Sample Size Increases

Given any initial referendum CV survey’s sample size and the prospective investment project’s NPV
estimates based on the survey’s mean WTP, decisionmakers can either finalize the project
acceptance/rejection decision or commission further studies to try to reduce the uncertainty about the
outcomes. 

Only information about the factors that can have a significant impact on the project outcome reduce the cost
of uncertainty in a meaningful way; in most cases uncertainty about benefits will be a major influence
(Vaughan et al. 1999, Vaughan et al. 2000a, 2000b, 2000c). The value of information is the change in the
cost of uncertainty occasioned by gathering additional information. The value of information must be
compared with the cost of information. If the value exceeds the cost, it is worth doing additional sampling
to gather more information; otherwise the project should be accepted or rejected on the basis of the
information on hand.



13 If a more precise measure of )N* is desired because the normality assumption is in doubt, a full Monte Carlo CB
analysis can be undertaken to compute the EVSI empirically and find )N*.
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To sum up in words, the steps to find the optimal sample size via Bayesian decision analysis in a sequential
approach are:

(1) Postulate an a-priori guess about the expected value of WTP per household (or per person) and
a reasonable opinion about the range in the expected value.

(2) After the survey focus group sessions and the pre-test, draw a small initial referendum CV
sample  (e.g. N0 of around 250 observations, say 50 in each of 5 bid groups) and administer the
final questionnaire. Calculate a nonparametric sample mean WTP per household, the variance
of the sample mean, and the standard error of the sample mean. Approximate the population
variance, F2, as the product of the initial sample size N0 and the estimate of the variance of the
sample mean.

(3) Do an initial economic project CB analysis to estimate the expected value of discounted net
benefits, E(NPV), at baseline conditions. Determine whether the opportunity loss follows Case
I (project acceptance) or Case II (project rejection) and locate the region of opportunity loss for
NPV. Establish the parameters of a linear relationship between the expected value of opportunity
loss in NPV and the expected value of WTP. 

(4) Combine the prior guesses from Step 1 with the sample WTP information from Step 2 following
a Bayesian formula to develop posterior estimates of the mean and standard error of WTP.  

(5) Using the posterior estimates from Step 4 as prior estimates, hypothetically increase the sample
size from the base used in Step 2. Repeatedly compute the reduction in the variance of mean
WTP that would result posterior to sample augmentation over a range of sample sizes )N above
the initial base N = N0. 

(6) Assume the expected value of NPV is normally distributed. Using the linear relationship
between NPV and WTP from Step 3, monetize the reduction in variance in the expected value
of NPV losses associated with different degrees of augmentation of the original sample. These
reductions in the expected cost of uncertainty (ELoss,I or ELoss, II as the case may be) from a second
round of sampling represent the expected value of additional sample information, EVSI, or the
benefits of sample augmentation.

(7) Over a range of hypothetical )Ns above zero, numerically compare the expected value of
information contributed by an additional sample observation (i.e. successive changes in the cost
of uncertainty obtained in Step 6) to the marginal cost of a sample interview. Find the sample
size where the marginal value of information is approximately equal to the cost of an additional
referendum CV interview (for simplicity, assumed equal to the variable sampling cost and hence
constant). The result is the optimal (additional) sample size, )N*. The total sampling effort NT

will thus equal N0 + )N*. The original small sample will be adequate if )N* equals zero.13

The first two steps have already been covered. The next section explains the rest of the above steps in detail.
A subsequent section simplifies the procedure by eliminating the need to formulate priors (Step 1). Then,
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the approach is demonstrated using the case study project data in a worked example, assuming tight, diffuse,
and nonexistent prior judgements. The effects of project cost increases on the optimal sample size are
explored, and conclusions drawn.



14 It is assumed that in the CB analysis of the investment, per household (or per capita) WTP benefits are multiplied by
the size of the beneficiary population in every year to obtain aggregate gross benefits. The expected signs for " (negative) and $
(positive) are assigned.

15 The intercept for costs was shadow priced. The slope also incorporates a shadow price factor to allow the WTP to  be
expressed in terms of the original survey responses, without shadow pricing. Because WTP per household is on a monthly basis,
population in every year has to be multiplied by a factor of 12 in addition to the shadow price factor.

16 From the properties of the expectation and variance operators E(" + $X) = " + $E(X). This says that the expected
value of a constant ("), plus another constant ($) times a random variable (letting X represent WTP) is the constant " plus the
constant $ times the expected value of the random variable. For example, see Paaffenberger and Patterson 1987, p. 208 and Little
1978, Chapter 10 on strictly linear relationships between random variables versus error propagation formulas.

17 Probabilistic cost-benefit analysis not reported herein strongly suggests that the investment is justified if a reasonable
mean benefit just slightly higher than the Turnbull lower bound (Vaughan et al., 2000a) so this paper does not employ the
Turnbull mean and its variance in choosing the optimal sample size. 
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AN OPTIMIZATION METHOD FROM BAYESIAN DECISION
ANALYSIS

The Linear Payoff Function

The first key to implementing Schlaifer’s (1961) approximate optimization method is the linear payoff
function. It describes the relationship between the quantity measured by the sample (mean WTP in this
instance) and the payoff decision variable that depends on the sample information, in this case the expected
value of NPV. This function is a compact summary of the CB analysis. Net present value is written as the
linear relation E(NPV) = !" + $•E(WTP). If the expected value of WTP from a CV survey is the only source
of benefit, the intercept, !", represents the sum of discounted capital and operating costs of the investment.
If there are any other sources of benefit (such as our energy generation benefits) they can be netted out of
the discounted costs to get the intercept. The slope, $, is the marginal contribution to discounted net benefits
of an increase in average WTP per household (undiscounted).14 It too can be easily calculated by simply
taking the present value of the number of beneficiaries to whom the mean WTP is applied over the project’s
lifetime. For our case study E(NPV in R$) = !594,653,964 + 100,988,487 CE(WTP).15 

Given this linear relationship between discounted profits and household WTP, if the sample mean WTP is
normally distributed, the outcome variable, E(NPV) will also be normally distributed with mean E(NPV) =
-" + $ • E(WTP) and variance VAR(NPV) = $2 • VAR[E(WTP)].16 The break-even value that sets E(NPV)
to zero is :b = "/$, = 594,653,964/100,988,487, or R$5.89. For any expectation of WTP less than :b

opportunity losses in NPV will be incurred. From Table 4 it is clear that all of the nonparametric sample
means other than the Turnbull lower bound mean WTP are above the break-even value, so the correct
decision is to invest.17 But, the sample mean is a random variable so there is some non-zero probability that
it could be below the break even value. For example, the preferred measure, a 75-25 weighted combination
of the lower and upper bound means from Table 3, is R$7.47, and its standard error is 0.84, putting the



18 Opportunity losses are conditional because, after the first sample has been taken and the optimal act is chosen (in the
case illustrated, invest because E(NPV)>0) they are conditional on that act. See Paffenberger and Patterson, p. 1069. For a full
discussion that may be more accessible than Schlaifer’s original book, see Winkler 1972. 
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Figure 2. Losses and Loss Probabilities for WTP Below Break-Even

sample mean 1.88 standard errors above the break even value. The Kriström and Paasche means are even
more distant from the break even value (R$3.31 and R$6.80 respectively in absolute terms and 3.28 and 4.96
standard errors respectively). Under these means the cumulative probability of a loss is clearly lower than
it would be using the 75-25 weighted average to measure WTP and predict NPV. 

A Normal Approximation to the Distribution of the Benefits of Additional Sampling

This leads to the second key to Schlaifer’s approach. It is that, given a successful project on average, each
possible NPV loss has a probability associated with it. Centering the net benefits distribution on the most

likely value of WTP, the observed sample mean, the loss probabilities are defined by the tail portion of a
normal density function lying below :b. The sum of the products of all the possible expected losses and their
associated probabilities reveals the cost of uncertainty. Figure 2 illustrates the superimposition of the linear
relation representing the opportunity loss function (also called the conditional18 value of perfect information
or CVPI function) on the normal E(WTP) distribution whose standard error is assumed known from the first
small sample. 
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The distribution of gains and losses in Figure 2 is centered on the sample mean WTP of R$7.47, with an
initial spread given by the mean standard error of the small sample, 0.84. Increasing the sample size
decreases the amount of spread in the (assumed) normal density, thus decreasing the expected value of a loss,
as demonstrated by the probability density function generated by a larger sample and a smaller standard error
(the lightly shaded line in Figure 2). Unlike the the small sample’s density, it has an infinitesimal amount of
its area to the left of the break-even point of R$5.89.

Losses in NPV are shown as positive in the figure. The horizontal axis intercept of the CVPI function is the
break-even value :b, given discounted costs equal to !". It can be found by setting E(NPV) to zero and
solving the linear function !" + $C :b = 0 for :b = " / $. The slope, $, measures the decrease below zero
in NPV for any WTP below the break-even value. So, for WTP < :b, the CVPI function’s dependent variable
equals $ C [:b ! E(WTP)] and for WTP$ :b the CVPI function is zero.

All else equal, higher discounted costs (a larger negative ") shift the CVPI function to the right, raise the
requisite break-even value and, given the sample mean WTP, put more mass of the tail of the normal
probability density under the non-zero part of the CVPI loss line. The expected opportunity loss or cost of
uncertainty is the sum of the products of the normal density function to the left of the break-even value and
the conditional value of perfect information to the left of the break-even value. Therefore, higher costs raise
the cost of uncertainty, given the sample mean estimate of willingness to pay.

Developing the Objective Function

To calculate the required loss integrals, Schlaifer (1959, 1961) normalizes the extent of departure of the
break even point from the sample mean WTP and computes a “unit loss integral” from the standard normal
distribution (Table IV in Schlaifer 1961). Multiplying the value of the unit loss integral by $ representing
the marginal contribution of the sample measurement (WTP) to the outcome (NPV) yields the expected loss
of an (optimal) terminal action, ELTA. As previously mentioned in Table 4, the ELTA is also called the cost
of uncertainty or the expected value of perfect information, EVPI, if the decision to invest is made
immediately after taking the first small sample without gathering any additional information. That is:

ELTA = EVPI = $ C F1(:
~) C LN(|D|)

where:

$ Marginal contribution of WTP to NPV, in $. 

F1(:
~) Standard error of the mean WTP posterior to taking a first small sample. The posterior can either be

the standard error of the mean of that sample in the absence of a subjective prior (or under a very
diffuse prior) or the posterior combination of a prior guess and the sample standard error. (See the
next section for details). Specifically (Schlaifer, 1961, p.305; Paffenberger and Patterson, 1987, Ch.
23) the information contained in the prior distribution, I0 , is the reciprocal of the prior variance of
the population mean, or 1/ F0

2(:~), denoting the prior with a “0” subscript. The information in the
first small sample, Ix– is the reciprocal of the variance of the sample mean, or 1/F2(x–). The posterior
variance of the mean, 1/I1 is the sum 1/ (I0 + Ix–) and the posterior standard error is the square root
of that sum, or:

F1(:
~) = %&1/I1 = [1/(I0 + Ix– )]1/2 = [1/ (1/F0

2(:~) + 1/F2(x–)) ]1/2 



19 For a profitable investment D < 0. 

20 While Schlaifer is not too clear, Bonini et al. (1997) define LN as: 
-D          4

LN  = I (-D - x) fN(x) dx  = I(x-D) fN(x) dx
-4 D

where fN(x) is the standardized normal density function. The expression on the left applies to profitable investments, the
express ion on the right to unprofi table ones. The expressions are symmetric; for any !D whose absolute value equals D they both

produce the same value of LN. In words, the express ion on the left is the integral of the standard normal variate from negative
infini ty up to !D, which is the standardized offset between the sample mean and the break-even value. Beyond !D, the
probability of an opportunity loss is zero, so, although the zero probability is ostensibly omitted from the calculation, LN is not
the mean loss of the truncated distribution, but measures the untruncated mean loss  of the enti re distribution (Jedamus and Frame
1969, p.97).
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   = [(F0
2(:~) C F2(x–)) / (F0

2(:~) + F2(x–))]1/2

|D| The absolute value of the standardized difference between the break-even value of WTP, :b, and the
mean posterior to taking a first small sample, E1(:

~).19 That is, in Schlaifer’s notation:

 |D| = |:b - E1(:
~)| /F1(:

~). 

E1(:
~) The mean posterior to taking a first small sample. It can either be the mean, x–, of that sample in the

absence of a subjective prior or the posterior combination of a prior guess about the mean, E0(:
~) and

the sample mean. Using I0 and Ix– from directly above as weights:

E1(:
~) = [I0 C E0(:

~) + Ix– • x– ] ÷ [I0 + Ix– ].

LN Unit loss integral, or the expected value of the difference between the normalized random variable
of interest, x, and D.20

By taking a second sample and not acting immediately on the basis of the first small sample, it may be
possible  to reduce expected losses. The expected value of the new sample information, EVSI, is a function
of the monetary value of the reduction in variance due to the second sample, or the reduction in the ELTA.
To find the optimal size of a second sample, )N*, the function to be maximized includes the benefit of
variance reduction and the sampling costs. The benefits are measured as the expected value of information
obtained from a second sample of size )N >0, assuming the population variance of WTP is known or set
equal to the variance obtained from the first sample. Analogous to EVPI, the expected value of the sample
information, EVSI, is the value of the reduction in losses due to the reduction in variance brought about by
taking more observations, )N:

EVSI = $ C F(E
~

1) C LN(|DE |)

where:

F(E
~

1) Is the preposterior reduction in the standard error of the mean attributable to taking a second sample
of size )N. It is calculated as the square root of an information-weighted average of the posterior
variance of the mean from above, F1

2(:~), and the variance of the mean the new sample is presumed
to produce, F2/)N. To get F2/)N, assume the population standard deviation (of individual



21 Throughout we assume the fixed costs of taking a second sample, Ks are zero, because most of these costs (for
consulting services, focus groups, questionnaire pretesting and design) would be incurred to obtain the initial sample of 250
cases. 

22 See Schlaifer (1961, pp. 330-331) for a discussion of the behavior of the ENGS function; the explanation is
complicated and defies  intui tively obvious summary.
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observations, not the mean) F, is approximately equal to the standard deviation from the first sample.
The value of F2 can then be obtained as the product of the size of the first sample, N=250, and the
variance of the mean WTP (see Table 3 above), or F2 . N F2(x–). Then, the Bayesian preposterior
reduction in the standard error of the mean (Schlaifer 1961, p. 324; Paffenberger and Patterson 1987,
p. 1108; Winkler 1972, p.364; Lapin 1994, p. 464) is just the square root of: 

 F2(E
~

1) = F1
2(:~)

 �
 ______________F1

2(:~)

F1
2(:~) + F2/)N �

 

|DE| The absolute value of the standardized difference between the break-even value of WTP, :b, and the
mean posterior to taking a first small sample, E1(:

~), now using F(E
~

1) as the preposterior estimate
of the standard error of the mean WTP at new sample size )N. That is, in Schlaifer’s notation:

 |DE| = |:b - E1(:
~)| / F(E

~
1). 

The costs of sampling are assumed to be a linear function of )N, with fixed costs Ks and unit variable costs
ks. Then, the full loss-cost function to be minimized with respect to )N is:

£ = Min
)N

: (EVPI - EVSI) + (Ks + ks )N)

Once N0 is chosen, EVPI and Ks are constants.21 Therefore minimization of £ is equivalent to maximizing
a concentrated net benefit function £Nwhere EVSI represents the benefits of taking an additional sample of
size )N and incurring total variable costs of ks )N. The expected net gain from (additional) sampling,
ENGS, becomes:

£N = Max
)N

: ENGS = EVSI ! ks )N = $ C F (E
~

1) C LN (| DE |) ! ks )N

EVSI is a function of )N because F (E
~

1) and LN (| DE |) are nonlinear functions of )N. The optimum sample
size that maximizes £N with respect to )N has to be found numerically. In some cases, the EVSI function will
be less than the variable costs of sampling for all values of )N, so no additional sampling effort is warranted.
In other cases, the net gain from additional sampling will be positive for )N between a new sample size of
one and the number of cases where EVSI = ks )N, and should be relatively easy to locate. Finally, the net
gain from additional sampling may initially be negative and decrease with )N (because EVSI < ks )N over
this range), and only later exceed variable costs in a narrow region of values for )N.22 Finding the optimum
in this case may depend on making a good choice of the starting value for the numerical search.
Approximations to aid the search are discussed in Annex 2. 



23 For a flowchart that is clear and easy to follow see Lapin (1994), Figure 26-15, p. 1046.
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SIMPLIFYING THE BAYESIAN DECISION ANALYSIS BY ASSUMING
TOTAL IGNORANCE

The Bayesian approach is not difficult to implement. Although it looks complicated, the steps involved are
relatively simple.23 The appearance of complexity is misleading, arising mainly from the need for an
elaborate system of notation in order to keep track of the several prior and posterior means and variances
involved in the several solution steps. 

However, things can be made simpler yet by dropping the requirement that priors be formed. Tight priors
are desirable because they reduce the required size of the optimal sample, all else equal. But while many CV
studies have been done in developing countries they almost defy easy summarization (Ardila et. al. 1998)
so forming reasonable prior beliefs on the basis of fragmented and inconsistent  past experience is difficult
indeed. In fact, unless priors are reasonably accurate they will not contribute much information on WTP
location and spread beyond what an initial survey sample contains, so the influence of relatively diffuse
priors on the optimal decision will be trivial. In this common situation, little can be gained from formulating
wildly inaccurate prior estimates; all the information content will be in the first small sample, N0. The
simplified sequential approach suggested in this section mirrors those realities.

Modifying the Bayesian Linear Profit and Normal Loss Distribution Method

Recall the fundamental Bayesian relation between the information content of the posterior (denoted with a
1 subscript, or I1) and the information contained in the prior (denoted with a 0 subscript, or I0) and the sample
(Ix– ):

I1 = I0 + Ix– 

Equivalently, the posterior information content equals the sum of the reciprocals of the prior and sample
variances of the mean:

1/F1
2 = 1/F0

2 + 1/ F2 x
– 

Under total ignorance there is no information content in the prior because the prior variance is extremely
large, so the only useful information comes from the sample itself. Then I1 = Ix– ; F1

2 = F x
– 2 and :1 = x–. This

means that the expression for the expected value of perfect information, EVPI, from above can be rewritten
as a function of the standard error of the mean from the first small sample:

ELTA = EVPI = $ C F(x–) C LN(|D|) = $ C F/%N0 C LN(|D|) 
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where now:

|D| The absolute value of the standardized difference between the break-even value of WTP, :b, and the
mean from the first small sample, standardizing with the standard error of the sample mean:

|D| = |:b - x
–| / F(x–)

Under this simplification the prior mean and standard error entering into the preposterior step where the
optimal )N is sought are just x– and F(x–). The value of the reduction in opportunity loss brought about by
the contribution of any sample size increase of )N to variance reduction now becomes a simpler expression.
It  depends on standard deviation (s . F) from the first sample, without any adjustment for a subjective prior.

EVSI = $ C F* C LN(|DE|)

where:

F* the preposterior degree of reduction in the standard error of the mean contributed by a second sample
of size )N under total ignorance. Here, F* is the amount of revision in the standard error of the
mean from the prior to the posterior distribution. 

|DE| The absolute value of the standardized difference between the break-even value of WTP, :b, and the
mean from the first small sample, standardizing with F* representing the amount of revision in the
standard error of the mean between the first small sample of size N0 and the ultimate preposterior
sample of size N0 + )N.

As before, the trick is to place the posterior variance of the mean from the previous step in the role of prior
in this step, so F(x–)2 from the first  sample now plays the role of the prior. From the Bayesian rule I1 = I0 +
Ix– above, the preposter ior variance of the mean after the second sample is taken is the sum of the prior
variance from the first sample and the variance of the mean from the second sample. With the population
standard deviation F = s = F(x–) C %N0 assumed known, the information content of the posterior is greater
than the prior because of the expansion in sample size from N0 to N0 + )N:

 1/F1
2 = 1/F0

2 + 1/F x
– 2 = 1/(F2/N0) + 1/(F2/)N) = (N0 + )N) / F2  

As intuition would suggest, the posterior variance is the variance of the pooled sample NT = N0 + )N. Taking
reciprocals of the preceding:

F1
2 = F2 / [N0 + )N]

Then, (Paffenberger and Patterson, 1987 p. 1108; Lapin 1994, pp. 1032-1038; Winkler 1972, pp. 363-364)
the shrinkage in the standard error of the mean due to sample size augmentation, F* is defined as:

F* = pF0
2 - F1

2 

ÕÕ
  =  p[F2/N0] - [F

2 / (N0 + )N)] 

ÕÕÕÕÕÕ
  

Under total ignorance, F* is simply a function of the population variance, the initial sample size, and the
addition to it. The rest of the optimization proceeds just like the pure Bayesian case.



24 Before consulting the Bayesian decision analysis literature and Schlaifer’s optimization method we originally took
an intuitive Monte Carlo loss-cost minimization approach that was similar, but not identical, to the Monte Carlo routine
discussed here. We are grateful to a reviewer of an early version of this paper who asked for a theoretical justification and
generalization of that intuitive brute force method. His comments directed us to the Bayesian decision analysis literature and the
approximate solution for optimal sample size assuming linear profits and normal distributions. 
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Verification: Hueristics of a Monte Carlo Approach

Schlaifer (1961, p. 341) comments that even in “violently non-Normal problems” a number of numerical
analyses showed that the approximation performs well, but he also cautions that “In problems where a good
deal is at stake it will be well to use the Normal optimum only as a starting point and then use exact methods
to trace out expected total loss in the neighborhood of this point.”

Let us back up to the beginning and suppose the researcher admits to near total ignorance about mean WTP
and its variance before an initial sample is actually taken.24 Once the first sample of size N0 is in hand,
measures of mean WTP and its variance can be calculated. Using Monte Carlo CB analysis, the initial NPV
distribution and EVPI can be easily obtained, as can the EVSI for sample size increases above the initial
base.

The reduction in the standard error of the mean (F*) for a range of values of )N near the optimum
previously found under the Normal approximation method can be calculated as a function of the population
variance, F, N0 and )N. Repeated Monte Carlo CB simulations can then be run using the shrinkage in the
standard error of mean WTP associated with each of several ascending values of )N as initial conditions.
Without having to invoke the normality assumption, empirical estimates of EVSI and ENGS can be extracted
from each simulation and the optimum )N* found by trial and error. 

This tedious, time consuming and computationally intensive Monte Carlo process is hardly operational.
Monte Carlo CB analysis with the case study data was undertaken to verify the accuracy of Schlaifer’s
approximate solution. The results confirmed that in practical work Monte Carlo analysis can be safely
bypassed by using Schlaifer’s linear loss function and normal NPV distribution approximations instead, and
maximizing EVSI with respect to )N. The next section demonstrates the results of applying these steps to
the Tietê investment project data using Schlaifer’s approximate solution that assumes linear profits, normal
distributions, and a known (or knowable via the first sample) population variance.



25 The spreadsheet was successfully benchmarked using the example data in Schlaifer 1961. It was also independently
replicated by a colleague to verify the cell formulas. The interested reader can safely duplicate the structure and insert his/her
project data to compute an optimal sample size using the Bayesian approach. To get results under total ignorance, a separate
spreadsheet is not needed; simply insert a very large number in Row # 10 for the prior standard error of the mean. This will wash
out the influence of the prior in all subsequent calculations.

26 In the treatment of the standard method, we had to form guesses about the mean WTP and the standard deviation of
individual observations in the population. Here, we are speculating about the mean of all possible prior means and the spread in
that (normal) prior distribution of hypothetical means. This explains the use of the notation F0(:

~) rather than F0.
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A WORKED EXAMPLE OF FINDING THE OPTIMUM SAMPLE SIZE

In review, using actual data involves forming a prior “guesstimate” about the mean WTP and the population
variance, drawing an initial “small” sample, combining the sample estimates of mean and variance with the
prior estimates to arrive at posterior estimates, and using those estimates to monetize the potential reduction
in expected opportunity loss that might be gained by gathering more data and hence decide whether a larger
sample would be optimal. By invoking the assumption of total ignorance the sequential optimization
approach only requires mean and variance information from a small original sample. If additional sampling
would be optimal, the extra observations can be collected in a subsequent round of interviewing. 

The case study demonstration follows the structure of the spreadsheet algorithm for finding the optimal
sample size provided in Annex 3, which documents all of the calculation steps.25 The subsequent discussion
is based on the weighted 75-25 mean and its standard error, but similar calculations using any of the other
means (e.g the Turnbull, Kriström or Paasche means) can easily be done by following the same structure.

The WTP Distribution

Referring to the spreadsheet algorithm for sample size optimization provided in Annex 3, the first two steps
have already been touched on. The concise summary below uses Schlaifer’s (1959, 1961) notation to make
it easier for the reader to consult the original sources and the Annex. 

Priors for the Parameters of the WTP Distribution

When example priors were constructed for the classical method above, the triangular distribution was
invoked for ease of use. Now, assume instead that the population mean of WTP, :, is a random variable
having prior probabilities that can be obtained from a normal density function.26 Since normality is the
operative assumption, suppose the prior mean E0( :

~ ) = :̂ is 1% of income, or R$ 8.28. A prior measure of
the standard deviation of : is needed to summarize the a-priori variability in possible values of :. 

To guesstimate the variability in mean WTP, :, in advance of taking any measurements at all, Schlaifer’s
technique (1961, p.  301) asks the decisionmaker to speculate about what interval around the prior mean
would give the guess an even (50-50) chance of being correct. Somewhat arbitrarily choosing an error of
R$4.00 on either side of the prior says the true mean is as likely as not to fall between R$4.28 and R$12.28.



27 The energy benefit offset to discounted capital and operating costs is R$38,892,992, while at baseline conditions
total discounted costs are R$633,546,963. For changes in cost conditions relative to the baseline, the intercept !" in the linear
profit function  varies according to the linear relationship !" = 38,892,992 ! 633,546,963 (Cost Level/Base Cost Level), while
the slope remains unchanged. For instance, if costs increase by ten percent , the intercept changes from !594,653,984 at the
baseline to !626,331,332. This relationship can be used to explore the effect of decreasing the standardized distance of E(NPV)
from zero on the optimal sample size.  
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From the standard normal distribution, the standardized value of [:-E0( :
~ )] / F0(:

~) that demarcates 25% of
the distribution’s area is 0.67 so, solving 0.67 = 4.00/F0( :

~ ), the prior for the population standard deviation
of : is 4.00/0.67 = R$5.97. This represents a weak or diffuse prior because the guess about the mean WTP
has a relatively broad band of uncertainty and therefore E0( :

~ ) has very little information content. 

Initial Sample Estimates of the Parameters of the WTP Distribution

The expected value of the weighted sample mean is the population mean, :. That is, E( x– ) = : = R$7.47.
Recall from Table 3 that the variance and standard deviation of the distribution of sample means at N0 =250
cases are F2(x–) = s2/n = R$0.70; and F(x–) = s/n1/2 = R$0.84. Finally, the sample standard deviation can be
obtained from the sample estimate of the standard error (or deviation) of the mean (Schlaifer 1961, p. 265)
and used as if it were the true population standard deviation. Thus F . s and s = F(x–) • N0 

1/2 = R$ 13.23.

By definition, the mean is asymptotically normally distributed. Therefore, discounted net benefits would be
normally distributed if WTP benefits are the only source of gross benefit, if NPV is linearly related to mean
WTP, and if costs are either deterministic or normally distributed as well. 

Profits from Investment and Sampling Costs

Linear Profit Function 

The relation between NPV and WTP can be easily extracted from a deterministic CB spreadsheet model
through a simple sensitivity analysis by fitting a linear Ordinary Least Squares model to the NPV data points
that result from varying WTP. Or, simpler yet, the shortcuts covered previously to finding the intercept and
slope of the CVPI function can be used. In the case of our sample data the fit is perfectly linear. At baseline
cost conditions E(NPV) = R$159,730,009 = -594,653,983 + 100,988,485 (WTP). The break-even value of
E(WTP) is R$5.89 per household per month. The intercept represents discounted project  costs and some
market benefits for energy production that were not estimated via CV.27 

Linear Sampling Cost Function 

The sampling cost function is linear, with a marginal (equals variable) cost per observation of R$89 in
shadow-priced terms, as required by IDB protocols (Powers 1981). Zero fixed costs for the second round of
sampling are assumed.

Results

Under baseline initial conditions, including project costs and the diffuse prior, it is optimal to augment the
initial sample size beyond 250 cases. The logit probability formula from Annex 2 indicates that additional
sampling should be done, and brute force exploration reveals that additional sampling can produce positive
values for EVSI net of variable sampling cost. Numerical optimization using Excel’s Solver routine returns



28 The figure was produced by 50,000 Monte Carlo trials of a risk-based CB analysis using Crystal Ball. No formal test
of normality (e.g. the Komolgrov-Smirnof statistic) was undertaken, but the median, R$ 187 million, is very close to the mean,
and the measures of skewness (0.12) and kurtosis (2.98) are consistent with approximate normality. 

29 From the linear profit function VAR[E(NPV)] = $2 • VAR[E(WTP)] or (100,988,485)2  C0.70 and SE[E(NPV)] is
approximately [VAR(E(NPV))]1/2 = R$84 million. This is lower than the empirical result of R$114 million because it only
reflects variation in WTP benefits. Under the linear approximation the distance of NPV from zero in SE units is
$160,955,974/R$84,493,829, or 1.9. Equivalently, the sample mean of WTP, R$7.47, is the same number of standard errors
away from the break-even value of R$5.89 because (R$7.47 ! R$5.89)/0.835 also equals 1.9 with the discrepancy due to
rounding. The Monte Carlo mean NPV and its standard error differ from the deterministic linear prediction because they are
affected asymmetrically by randomness in cost and timing variables that the deterministic linear function ignores.
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Figure 3 Empirical NPV Distribution

a solution of 2243 cases for )N*. The optimal sample size needed en toto is 2,493 cases, which is almost
1,000 cases larger than the largest sample size recommended by the standard method. The explanation for
this result, while not intuitively obvious, can be uncovered by looking at the empirical net benefits
distribution shown in Figure 3.28 

The empirical Monte Carlo NPV
distribution in the figure is
approximately normal because the
influence of the normally distributed
WTP benefit estimates dominates other
non-normal sources of variability in the
model. The baseline expected value of
NPV is R$190 million and the standard
deviation of the empirically generated
distribution of mean NPV is R$114
million. Because the grand mean of the
distribution of means is 1.67 standard
errors above zero29 the (empirical)
probability of project success is 95% so
there is a 5% chance of incurring an

opportunity loss. While this is a fairly robust investment, recall from Figure I that the standardized distance
between E(NPV) and zero has to be above about 2.4 for )N to be zero. Therefore, stopping with the initial
small sample would have been recommended only if the sample mean WTP were R$7.92 or greater rather
than the R$7.49 that was actually observed (e.g. no additional sampling would be recommended if the
optimization were based on Kriström’s mean of R$9.20). 

Another relevant issue is how the optimal sample size would behave if the gap between the mean of the
E(NPV) distribution and zero were narrowed rather than widened. The optimal sample size is sensitive to
the extent of the displacement of the decision variable, the expected value of NPV, from zero, which is
equivalent to the standardized offset of E(WTP) from the break even value :b. Looking back at the EVSI
formula,  as |DE| increases with a widening gap between the expectation of WTP and the break-even WTP,
the more certain the decision maker becomes that the optimal decision under the prior information is correct
without additional sampling. As |DE| increases the expected value of opportunity loss, LN falls, lowering the
EVSI of any particular )N (see Lapin 1994; Winkler 1972).

For contrast with improving on the baseline case, looking at the opposite extreme is instructive. Raising
discounted costs by 25% (ie. shifting the intercept of the linear net profit function from !R$595 million to
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Figure 4. The Expected Net Gain from Additional Sampling 

!R$753 million; see footnote 27 above) brings the expected value of NPV very close to zero and puts half
of the distribution of expected net returns into the negative region. Here, the optimal size of )N will be at
a maximum. Table 5 shows the elements of a crude trial and error search for an optimum, assuming a diffuse
prior for WTP, and Figure 4 shows the optimum graphically. 

Table 5. Crude Step Search for N* with E(NPV) Near Zero

Trial Value for )N: 5750 6750 . Optimum 7750

Change in SE of Mean F* 0.809321811 0.811879233 0.81379242

Standardized Distance DE 0.0410 0.0409 0.0408

Unit Normal Loss Integral LN(DE) 0.378772051 0.378834534 0.378881025

Value of Sam ple

Information

EVSI (DN) $30,957,867 $31,060,815 $31,137,831

Total Sample Co st KS + k s *DN $511,750 $600,750 $689,750

Net Ga in ENGS(DN) $30,446,117 $30,460,065 $30,448,081

Marginal Gain D EVSI (DN)/DN $120 $88 $67

Marginal Cost ks $89 $89 $89



30 Increasing project costs can be thought of as a proxy for decreasing E(WTP) or reducing the standardized distance
between E(NPV) and zero at the initia l sample size of N0 = 250 cases. 
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The table and figure show that the response surface is very flat. The approximate optimum is 6750 cases but
the gains to additional sampling diminish quickly after about 2000 cases. By inspection of the figure, the net
gains from an additional sample of 4000 cases (R$30,303,436) or even less are fairly close to the net gains
at the optimum (R$30,460,065). This is consistent with Schlaifer’s (1961, Figure 21.5) numerical
investigations which showed that moderate departures from the optimum number of cases (± 20% or even
± 30%) are likely to be inconsequential. 

To find the effect on the optimal N of the location of the E(NPV) distribution relative to E(NPV) equal to
zero, the baseline E(NPV) distribution has to be shifted leftward. To shift the NPV distribution, several
exercises were conducted, raising the mean of total project operating and investment costs above the baseline
by 5% through 25%, while holding the mean WTP constant at R$7.49.30 The increase of 25% is the extreme
discussed above that brings E(NPV) as close as possible in the risk analysis to the break-even point of zero
while remaining barely positive. Table 6 shows the effect that the standardized distance of E(NPV) away
from zero has on the optimal incremental sample size )N* under diffuse priors, tight priors and total
ignorance.

Table 6. Optimal Incremental Sample Sizes, )N*, Depending on Priors and Initial EVPI 

Costs Relative to Baseline ( " i ÷ "0)
 1.0 1.05 1.10 1.15 1.20 1.25

Small Sample Standard Errors F(x–) of

E(NPV) from Zero a 1.90 1.52 1.15 0.77 0.40 0.02

High Sampling Cost of R$89 Per Interview

Tight Prior b 0 0 0 1996 4393 6530

Diffuse Prior b 2243 3411 4600 5657 6409 6715c

Total Ignorance 2351 3507 4673 5697 6413 6687

Low Sampling Cost of R$30 Per Interview

Tight Prior b 0 0 0 3994 7458 10729

Diffuse Prior b 3866 5656 7506 9160 10340 10821

Total Ignorance 4022 5799 7615 9219 10343 10774

Notes: 
a. Because the prior mean exceeds the sample mean, the posterior standardized distance exceeds the

distance using the sample mean alone..
b. Prior guess of E(WTP) of R$8.28 with a prior ±50% error of R$0.50 for the tight prior and R$4.00 for

the diffuse prior.
c. Exact optimum corresponding to the approximate optimum in Table 5 and Figure 4.
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Figure 1 and the results in Table 6 suggest that, in this case, small samples suffice when sampling costs are
high and the mean of the NPV distribution is over about 2.4 standard errors away from the break-even point
of E(NPV)=0 because the decision has little downside risk. There is no payoff in taking larger samples to
shrink that risk by reducing the variance and further compressing the portion of the NPV distribution lying
below zero. However substantial gains to increasing the sample size begin to emerge after the expected value
of NPV falls below about 2.4 standard errors from zero. Although the algorithm does not explicitly
incorporate Type II error, the fact that the required sample size increases as the gap between E(NPV) and
the break-even point narrows provides protection against false acceptance of a mean WTP that justifies the
project when in fact the true mean WTP would lead to the opposite conclusion.

Table 6 convincingly shows that good prior estimates of the mean WTP and its spread can significantly
reduce the amount of sampling effort needed to reach an optimum CV survey sample size for investment
decisions. Unfortunately, given the state of the art, good prior estimates remain unattainable, especially in
developing countries. 
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CONCLUDING OBSERVATIONS

Small CV survey samples are probably adequate for CB analysis when the fixed and variable costs of
sampling are relatively high and the investment is extremely robust. If the investment has a probability of
failure of less than one percent, it is not necessary to take large samples. In this sense the common perception
is correct. If investment proposals are carefully screened and only the very best of them become candidates
for final project analysis, massive CV sampling efforts to measure WTP more precisely are not worthwhile.
However, investments with infinitesimal risks are rare. 

At the other more common extreme, when the investment is  borderline because nearly half of the NPV
distribution falls in the negative quadrant even though its mean NPV is barely positive, small 250 observation
samples will always be inadequate. In this situation, which can be easily identified a-priori, a search for the
optimum number of additional cases needed to augment the small sample is recommended. Variations in the
size of the second  sample of 20% or 30% around the optimum number of extra observations needed are not
likely to have much effect on expected total loss (Schlaifer 1961, p. 337). So even if a second sample is
necessary, money can be saved by only taking 70% to 80% of the recommended optimal number of
additional surveys.

Like our worked example, many prospective investments fall somewhere in the middle ground between can’t
miss and borderline proposals. The existence of this grey area makes it risky to rely exclusively on any
particular rule of thumb, be it for small, medium or large samples. But, in general, given an initial expectation
for WTP and a service flow outcome so the time pattern and magnitude of gross benefits is held constant,
the more  costly the project the larger the sample that will be needed to justify it. This paper has tried to show
how to make that general rule operational.

The literature on benefits transfer and meta analysis has been skeptical about the value of using accumulated
past experience to estimate the benefits of new projects (Brouwer and Spaninks 1999). The real value of this
kind of information has largely been ignored because researchers have focused mainly on the degree of
correspondence between predictions of WTP generated from past studies and the actual mean WTP results
from field work, working under the as if presumption that prior information would be used to replace new
sampling. 

This focus might be misplaced. Prior information need not be regarded purely as a substitute for new in situ
CV survey sampling. The two are complementary because combining good prior predictions of WTP with
actual survey samples can save a good deal of new sampling effort and money. The synthesis of past CV
results to make accumulated contingent valuation WTP information transportable to new situations might
pay off, but only if the status quo were to involve the systematic use of an optimal Bayesian sample size
protocol under the handicap of total ignorance or diffuse priors.

To date, international lending institutions have not systematically followed reliable protocols for selecting
CV survey sample sizes in their appraisal of prospective investments, and they are not alone. In this operating
environment, new information has little value beyond its immediate contribution to the specific decision at



31

hand, which is to economically justify a given project. The WTP data is used once and then forgotten. But
this information could become more valuable if sample sizes were chosen in the future that take account of
the expected opportunity loss the actual investor might incur. Then, there would be a good reason  to take
a longer range view about the value of information.
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31 To obtain the mean from the survival function, 1-F(x), the same reasoning developed below also applies.
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ANNEX 1 

Data and Formulae for Nonparametric Estimates of M ean WTP  and Its Variance

Table A1.1 The Small Sample Data

Bid Group j

Bid

R$

Total "No"

Answers Total Cases

[bj] [N j] [Total j]

j=0 0 na none

j=1a 2 35 98

j=2 5 34 54

j=3 12 39 51

j= M =4 20 37 47

j=M +1=5 > 20 na none

Column Totals: 145 250
Note:

a. The first two bid groups (R$ 0.50 and R$2.00) were
pooled at R$2.00 to  preserve monotonici ty.

Three Nonparametric Measures of the Mean and the Variance of the Mean

There are three nonparametric estimators of the mean: (1) a lower bound measure that understates mean WTP
(the Turnbull mean, see Haab and McConnell, 1997); (2) an intermediate measure (Kriström’s mean, see
Kriström 1990 and Boman et al. 1999) and (3) an upper bound measure that overstates mean WTP (the
Paasche mean, see Boman et al. 1999). The logic behind all three nonparametric estimators is the same. The
proportion of “No” answers at each bid level bj provides a discrete stepwise approximation to the cumulative
distribution function. The mean E(b) of a continuous random variable x with a cumulative distribution
function F(b)31 and probability density function f(b) – which is the first derivative of F(b) w.r.t. b – is given
by:

(1) E(b) = I b f(b) db 

The problem is to use a discrete approximation to compute:

(2) E(b) = E(WTP) .3
 j 

bj f(bj)

where the range of b is from zero to some upper limit bmax that forces F(b) close to 1.0 because the bid is
so high that almost all respondents would be unwilling to pay that amount for the environmental
improvement.

Haab and McConnell’s lower bound Turnbull mean sets each bj to the lower bound of the bid interval (i.e.
the  first interval runs from zero to the lowest bid offered so bj at j equals zero is set to 0, etc). The
intermediate and upper bound means are obtained by simply redefining the point of evaluation, b, in each



32 The Bowman et al. (1999) variance formulas incorrectly treat the bid, not the cell proportions, as a random variable
and are inconsistent with the respective expected value formulas because they were not derived from them using the fundamental
rules pertaining to the variance of a sum of random variables. Instead, an inappropriate textbook formula was forced to stand in.
We discovered this discrepancy by comparing the variances of the lower bound means produced using the Haab and McConnell
formula and the Bowman formula.  The variance from the latter was roughly double the former. We then ran 20000  trials of a
Monte Carlo simulation in Crystal Ball letting each cell proportion at each trial involve a draw from a binomial distribution with
parameters defined as the number of observations in each bid cell and the probability of refusal. The empirical results
independently confirmed the correctness of the Haab and McConnell variance formula. Our formulas for the variances of the
intermediate and upper bound means were derived by extending the Haab and McConnell formula to these situations and were
also successfully validated by Monte Carlo simulation. 
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interval to some fraction 6 times the lower bound plus (1-6) times the upper bound of the interval, where 0
# 6 # 1. Kriström’s intermediate mean sets 6 to ½ (the mid point of the interval) while the upper bound
mean sets 6 to 0. While Boman et al. (1999) try to put all three measures on a consistent symbolic footing,
there are errors in their notation for the means and, unfortunately, their variance formulas are incorrect.32

Below, all three measures are recast in  Haab and McConnell’s notation, which is conceptually correct.

Table A1.2. Formulae for Nonparametric Means and Their Variances

Measur
e

Meana Variance of Mean

Lower

Bound
3
M+1

j =1

  b j-1 p j
3
M+1

j =1

 (bj-1)
2[V(F j) + V(F j-1)] ! 2 3

M   

j =1

 (bj b j-1)V(F j)

Inter-

mediate
3
M+1

 j =1

 [6 b j-1 + (1-6) bj] pj 3
M+1

  j =1

 [6 b j-1 +(1-6)bj]
2[V(F j) + V(F j-1)] ! 2 3

M 

    j =1

 [6 b j-1 +(1-6)bj]C[6 b j +(1-6) bj+1]V(F j)

Upper

Bound
 3
M+1

 j =1

 b j p j 3
M+1

 j =1

 (bj)
2[V(F j) + V(F j-1)] ! 2 3

M   

  j =1

(bj b j + 1)V(F j)

Notes:
a. The probability density in bid group j, pj , equals the difference between the estimates of cumulative density in the current

and preceding bid groups, Fj ! Fj-1, where, letting N j represent the number of “No” responses and Yj the “Yes” responses in
group j, Fj = Nj / (Nj + Yj). There are j = 1...M distinct bids specified in the survey. The bid j = M+1 is the ultimate bid
level that the researcher must assume. It presumably drives Fj to 1.0.

b. The variance of each proportion Fj is equal to [Fj  C (1 - Fj)] ÷ (Nj + Yj).
c. The parameter 6 is assumed by the researcher to form a weighted average of the lower and upper bound bids in any

interval. Kriström’s mean uses 6 = 0.5, but any value of 6 between zero and one is  admissable. If 6 = 0 the Turnbull lower
bound mean results, and 6 = 1 returns the Paasche upper bound mean of Boman et al. 1999. 

Our preferred measure of the mean that is used in the main text sets 6 to 0.75, which is more conservative
(lower) than Kriström’s intermediate mean. Table 3 below provides the mechanics of our intermediate  mean
and variance calculation. Calculation of the rest of the means and variances proceeds analogously.
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Table A1.3. Calculation of Intermediate Nonparametric Mean and Variance of Mean Assuming k = 0.75.  

Bid

Group j Bid

Weighted
Bid 
bwtj

k = 0.75

Total
"No"

Answers
Total
Cases

Cumulative
Distribution 

Probability
Density 

Bid Group j
Variance

Square of
Weighted

Bid

Product of
Adjacent

Weighted Bids

Product of
Adjacent

Group
Variances

Variance
Term #1

Variance
Term #2 E(WTP)

[ bj ]
[k bj-1 +
(1-k)bj]

[ N j] [Nj + Yj ] [Fj=Nj / Totalj] pj = Fj - Fj-1 V(Fj) bwtj
2 bwtj C bwtj + 1 V(Fj) - V(Fj-1)

bwtj
2C

[V(Fj) - V(Fj-1)]

-2 C
(bwt jCbwtj + 1)

CV(Fj)
bwtj C pj

j=0 0 na none 0.000000 na 0.000000 … … … … …

j=1 2 0.50 35 98 0.357143 0.357143 0.002343 0.2500 1.3750 0.002343 0.000586 -0.006443 0.18

j=2 5 2.75 34 54 0.629630 0.272487 0.004318 7.5625 18.5625 0.006661 0.050375 -0.160322 0.75
j=3 12 6.75 39 51 0.764706 0.135076 0.003528 45.5625 94.5000 0.007847 0.357506 -0.666802 0.91
j=4 20 14.00 37 47 0.787234 0.022528 0.003564 196.0000 350.0000 0.007092 1.389995 -2.494630 0.32

j=M+1=5 40 25.00 na 0 1.000000 0.212766 0.000000 625.0000 0.0000 0.003564 2.227348 0.000000 5.32

Column Totals: 145 250 1.000000 4.025811 -3.328198 7.47

Mean: 7.47

Variance of the Mea n (Term#1 + Term #2): 0.697613

Standard Error of the Mean (Square Root of Variance): 0.835233
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ANNEX 2 

Approximations to Indicate Whether More Sampling is N eeded and the Size of )N

Schlaifer (1961) relates the need for more sampling to the values of his essential parameters of the problem
of sample size, labeled Z0 and the previously defined D0, and provides a nomogram (Figure 21.4, p. 332) that
indicates whether it is worth taking a second sample, depending on the values of these parameters. The
essential parameter Z0 is a function of the marginal contribution to NPV of a change in WTP (i.e. $), the
marginal costs of sampling (i.e. ks) the population standard deviation of WTP (i.e. F, approximated by the
standard deviation, s, from the first sample) and the standard error of the mean WTP posterior to taking a first
small sample (i.e. F1(:

~) ):

Z0 = [F1(:
~) / F] C [$F / ks]

1/3

Since many readers may not  have easy access to Schlaifer’s book and the decision nomogram, we fit a logit
probability model with a second-order index function to 197 pairs of D0 and Z0 points read from his Figure
21.4, coding the dependent variable as 1 if the nomogram recommended “Sample before Acting”, and as 0
if it recommended “Act without Sampling”. The model fit was reasonably good (pseudo R2 of 0.80) with 182
correct predictions and 15 false predictions. As a substitute for the Schlaifer’s figure, a decision to take an
additional sample should be made if the predicted probability from the model is equal to or greater than 0.5:

Probability Sample = 1/ {1 + exp [2.2061 - 1.1255 Z0 - 4.6102 D0 + 0. 0066 (Z0)
2 + 4.8539 (D0)

2 ]} $ 0.5 ?

If the answer from evaluating the probability model (or Schlaifer’s Figure 21.4) is “Sample before Acting”
it will be necessary to search for the optimum, )N*. A good starting value for the grid search over )N can
be found from a rough approximation to the optimum, )NApprox. using another simplification from (Schlaifer
1961, pp. 334-335): 

)N* . )NApprox = [($F/ks)
1/3]1/2 C [½ Z0 / PN (D0)]

where PN (D0) is the probability density of the standard normal density function evaluated at D0. The
optimum size )N* of the addition to the original small sample (N0 = 250) either be found through trial and
error by constructing crude fixed-step size grid search in the neighborhood of the initial guess, )NApprox.or
by calling an optimization routine like Excel’s Solver after specifying )NApprox. as the starting value.
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ANNEX 3 

Spreadsheet Formula Layout for the Optimum Sample Size Calculation:

Tietê Case at Baseline Under Diffuse Prior Information (1998 Brazilian Reals)

Row #
COLUMN A: 

Labels
COLUMN B:

Labels
COLUMN C:
Formulas RESULT COMMENT

1-3  I. Form Priors 

4 Prior Mean and Standard Deviation of WTP

5 Prior Mean E0 ( :
~ ) = :̂ 0.01*828 $8.28 Gues s the m ean W TP. 

6
Prior error @50% e 4 $4.00 Guess  the variat ion in the mean

covering  a ±50%  interval.  

7 Prior error UL@50% :̂ + e C5+C6 $12.28 Find th e upp er limit o f the inter val.

8 Prior error LL @50% :̂ - e C5-C6 $4.28 Find the lower l imit of the interval

9
Prior Upper Alt.  U @+25% [: - E0 ( :

~ )] / F0(:
~) NORMINV(0.75,0,1) 0.6745 Find the Stan dard No rmal z stati stic

value for each tail outside the interval

( i .e. each contains 25%)

10
Prior Standard Deviat ion of Population

Mean
F0( :

~ ) (C7-C5) /C9 $5.9304 Find the standard deviat ion of

popu lation mean W T P implied by the

prior, based on the error limits, e.

11
Prior Variance of Populat ion Mean F0

2( :~ ) C10 ^2 $35.1697 Find the variance of mean W TP

implied by the prior.

12-13  II. Get Posterior Distribution from Normal Prior and Sampling Distributions, Sampling Variance Known 

14-15 Sample Data

16
Initial (or First) Sample Size N0

250 250 Input value. Nu mbe r of case s in

init ial  small  sample.

17
Expected Value of Sample Mean E( x– ) = : 7.47 $7.47 Input value.

Calculate(Nonparametric) Mean

WTP 

18
Sample Variance s2 C19 ^2 $174.40 Calcula te variance of WTP from

sam ple  es t ima te  o f s tandard

deviation of W T P imm ediate ly below.

19

Sample Standard Deviation s C16^0.5*C21 $13.21 C alculate  sam ple estim a te  of

standard  deviati on of WTP using

standard  error and s quare ro ot of

sample size, 250.

20
Variance of Sample Mean F2(x–) = s2 / N0 0.449 $0.70 Input value. Calculate variance of

samp le Mean  WT P. 

21
Standard Error of Sample Mean F(x–) = s / N0 

1/2 0.670 $0.84 Input value. Calculate standard error

of sam ple Mean W T P as square root

o f   var iance of  mean WTP.

22 Posterior Calculation

23

Posterior Mean E1( :
~ ) (C5*1/C11+C1 7*1/C2 0) /

(1 /C11+1/C20)

$7.49 Compu te posterior mean as a

weighted avera ge of prior and

sam ple  means based on quantity of

information provided by each. See

Rows 27 through 29 below.

24

Posterior Standard Error of Mean F1( :
~ ) (1 /(1 /C11+1/C 20))^.5 $0.83 Com pute  posterior standard error of

mean as a  weig hted average of prior

and sample standard errors based

on quanti ty of information provided

by each. See Rows 27 through 29

below.



Row #
COLUMN A: 

Labels
COLUMN B:

Labels
COLUMN C:
Formulas RESULT COMMENT

39

25
Posterio r  Variance of Mean F1

2( :~ ) C24 ^2 $0.68 Com pute  as square of posterior

standard error.

26 Quantity of Information

27 In Sample Mean Ix–
1/C20 1.43 Relative  Information  content.

28 In Prior Mean I0 1/C11 0.03 Relative  Information  content.

29 In Posterior Mean I1
1/C 24^2 1.46 Pooled information content

30 Check I1 = I0 + Ix–
C27 + C28 1.46

31-32  III. Expected Profit After First Small Sample (i.e. Based on Posterior from II Above)

33

Linear Profi t  Function Intercept " -594653984 -$594,653,984 Input data for  intercept of linear

rela t ion between NPV and WTP, i.e.

NPV="+$*WTP. Calculate outside

from data  generated by deter minis tic

cost-ben efit analysis m odel. 

34

Linear Profi t  Function Slope $  100,988,487 $100,988,487 Input data for slope of linear relat ion

between NPV  and W TP. C alculate

outside from data generated by

determ inistic  cost-b enefit a nalysis

mode l. 

35
Expected  Pro f it  (NPV) "  + $ C E1( :

~
 ) C33+C34*C23 $161,738,697 Expe cted N PV a t poste rior base line

mean  WT P of $5.8 3.  

36
Break Even Value of  WTP "  ÷ !  $ C33/-C34 $5.89 Va l u e o f  W T P  tha t  se ts  expecte d

NPV to zero, given posterior mean

WTP.

37
Standardized Loss |D| = |:b - E1( :

~
 )| / F1( :

~
 ). ABS(C36-C23)/C24 1.94 S t a n d a r d i ze d  d i s ta n c e  b e t we e n

break-even WTP and  posterior

basel ine mean.

38
Unit Normal Loss Integral LN(D) NORMD IST(C37,0,1,0) -C37* 

(1-NO RMD IST(C3 7,0,1,1))

0.010051 Unit  Norm al Loss Integral Factor

(Schlaifer, 1 961, Table  IV, p. 370)

39

Expe cted Lo ss of O ptima l Terminal

Action

ELTA = EVPI = 

$ C F1( :
~

 ) C LN(|D |)

C34*C24*C38 $839,505 Expected toss of making an optimal

“go” or “no-go” investment decision

at this point without any additional

sampling ( i .e. based only on the

init ial priors a nd the  origina l sm all

samp le N=25 0 cases ). 

40-41  IV. Optimal New Sample Size (Depends on Data in Rows 46 to 64) 

42

Optimal N ew Sam ple Size )N Insert Approximate Trial Size to

Initial ize Oprimization from C83

(2683) and then  Optimize

2243 Size of a hypothetical second

sample  to augment the initial

sam ple of N=250. To find an

optim u m , iterate over alternative

values of DN  to find the s amp le

size t ha t m axim izes the Expected

Net G ain from  a secon d sam ple

(ENGS(DN) in Row 64 below.

43-45  V. Expected Value of Information from a New Sample vs. Cost of Sampling

46 Current P rior Set Form er Poste rior=New  Prior 

47

Current Prior for Mean=Posterior From

III

E 1( :
~

 ) C23 $7.49 R e p e a t  o f prev ious ly  compu ted

posterior value for new set of

calculations. I t  now becomes a prior

value in this step.

48
Current Prior for Standard Error of

Mean

F1( :
~

 ) C24 $0.83 Repe at. Former p osterior i n III now a

prior.

49
Current P rior for Variance of Mean F1

2 ( :
~

 ) C25 $0.68 Repe at. Fo rmer pos terior in  III now a

prior.

50 Variance of (Populat ion) Mean at New F2 ( x
–

 )  = F2 / )N 2 C19^2/C42 $0.08 Key step. Standa rd error of the mean



Row #
COLUMN A: 

Labels
COLUMN B:

Labels
COLUMN C:
Formulas RESULT COMMENT

40

Sample Size, Given Populat ion Sigma

Assumed Known and .  s

of the new  sam ple  of arbitrary size

DN=50. Used below to get revised

posteriors in Rows 52 and 53.

51 New Posteriors 

52

Preposterior Reduction in Variance of

M e an  fr om  DN

F2 ( E
~

 1

) C49* (C 49 / (C49 +C50 )) $0.61 C a l c u l a t e  up d a t e d  c h a n g e  i n

variance due to a second sample of

size DN using posterior from first

sam ple  as a prior and the new

sample estimate from Row 50.

53
Preposterior Reduction in Std Error of

M e an  fr om  DN

F  ( E
~

1 ) or F* C52^0.5 $0.78 Square root of change in variance  in

Row 52

54
|D| Absolute Value of Prior

Standardized Loss from above

|D|= |:b - E1( :  
~

)| / F1( :  
~

) C37 1.94 Repeat from above. Uses posterior 1

as new prior with 0 subscript

55

|D E|  Absolute Value of  Chan ge in

Standardized Loss due to )N

|D E|  = |:b - E1( :  
~

)| / F  ( E
~

1 ) ABS(C36-C47)/C53 2.04 Uses New Poster ior Standard Error

of Mean to calculate standardized

difference between break-even W T P

a n d m ean posterior to first sample of

N=250.

56
Unit Normal Loss Integral LN(DE) NOR MDIST (C55,0,1 ,0) -

C55*(1-

NOR MDIST (C55,0,1 ,1))

0.00755 Unit  Norm al Loss Integ ral Factorfor

DE (Schlaifer, 1961 , Table IV, p. 370)

57
Expected Value of Sample Information EVS I ()N) C34*C53*C56 $597,647 Expected value of informa tion in new

optima l samp le of )N* = 2243

58

Uncondit ional Expected Terminal Loss UETeL(N) C39-C57 $241,859 Terminal Loss after a new sample of

)N=2243 is taken. Equal to  ELTA

before  an addit ional sample ( ie. at

)N=0 )  min us the  EVS I(DN) 

59 Sampling Costs 

60
Fixed Cost K s 0 0 Set to zero  to simplify. Include actual

value here.

61
Marginal=Variable Cost k s 89 $89 Input data. E xam ple estim ate is  in

1998 B razilian Re als( R$) 

62
Total Sample Cost C60+C61*C42 $199,680 Multiply marg inal sam ple cost by DN

and add  to fixed cost.

63 Expected Net Gain from a Second Sample 

64

Expected Net Gain from a Second

Sample of Size DN

ENGS()N) C57-C62 $397,967 EVS I((DN ) minus  the total cost of

taking an additional sam ple of size

(DN ). This is the Objective  to

optimize over alternati ve values of

(DN ) . Use a g rid sear ch (see te xt)

or, more efficiently, SOLVER  in

EXCEL,  setting the TARGET CELL

as C64, equal to MAX; by changing

the (DN ) cell,  C42, subject to the

constraint that C42 is $  a sma ll

positive number (e.g. 0.001)



Row #
COLUMN A: 

Labels
COLUMN B:

Labels
COLUMN C:
Formulas RESULT COMMENT

41

65-67
 VI.  Addendum: Decide if Additional Sample is Necessary and Compute Approximate )N for Optimization 

Starting Value (See Annex I)

68
D Value Standardized Loss D C54 1.94 The First Essential parameter.

From Above

69 Intermediate Components for Calculating Z0 

70 First Component

71 F1( :  
~

) From Small Sample N0 C48 $0.83 From Above

72 F  guess from sample data = s C19 $13.21 From Above

73 F1( :  
~

) / F C71/C72 0.06

74 Second Component

75 k t C34 $100,988,487 From Above

76 ks C61 $89 From Above

77 (k t s / ks)
1/3 ((+C75*C72)/C76)̂ 0.33 245.19

78 Z Value  Z0 C77*C73 15.36 The Second Essential Parameter

79
h * ((1/C78* 0.5)*

(NOR MDIST (C68,0,1 ,0)))^0.5

0.0446 Crude approxim ation of t he optimal

ratio of:

n/((k t s / ks)
1/3)2 from Schlaifer

80
((k t s / ks)

1/3)2 C77 ^2 60,116 Denominator in ratio of 0  = )N / ((k t

s / ks)
1/3)2 See Row 83.

81

Prob ability an A ddition al Sam ple

Should be Taken

Logit Probabil i ty Model

Approximation 

+1/(1+exp(2.206+C78*-

1.1255+C68*-

4.6102+C78^2*0.006596+C68^

2*4.8539)

0.99 Logit  function fi t  to data from

Schla ifer’s  Sam ple Decis ion Figure

21.4

82
Take an Addit ional Sample Before Acting? IF(C81>0.5,“YES”,“NO”) Prob ably Yes R e s u l t  f ro m  e v a l u a ti n g  L o g it

model

83
Quick  Appro xima te Optim al DN  (Ignore if Ans wer to “Sa mple B efore

Ac t ing? ” i s  “NO” C79*C80 2683

Appro ximate  solution for DN. Use

in C42 above to initialize grid

search  or SOLVER optimization.


