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ABSTRACT

Fundamentally, this paper is about the value of information.

Whenever a cost-benefit analysis has to be undertaken using benefits
that are estimated from household survey data the size of the survey
sample must be specified. The most obvious case is the valuation of
environmental amenity improvements through contingent val uation (CV)
surveys of willingness to pay. One of the first questions that has to be
answered in the survey design process is “How many subjects shauld be
interviewed?’ The answer can have significant implications for the cost
of project preparation, since inLatin America and the Caribbean costs
per interview can range from US$20 to US$100.

Traditionally, the sample size question has been answered in an
unsatisfactory way by either dividing an exogenously fixed survey
budget by the cost per interview or by employing some variant of a
standard statistical tolerance interval formula. Neither of these
approaches can balance the gains to additional sampling effort against
the extrainterviewing costs. One might just as well use a dart board or
pick arandom number between 100 and 10,000.

The answer is not to be found in the environmental economics literature.
But, it can bedeveloped by adapting a Bayesian decision analysis
approach from business statistics. The paper explans and illustrates,
with aworked example, the rationale for and mechanics of a sequential
Bayesian optimization technique, which is only applicable whenthereis
some monetary paydff to alternative courses of action that can be linked
to the sample data. In this sense, unlike pure vduation studiesthat are
unconnected to a policy decision, investigators who use contingent
valuation results directly in cost-benefit analysis have a hidden
advantage that can be exploited to optimize the sample size. The
advantageliesin the link between willingness to pay and the dedsion
variable, thenet present value of the praspective investment.

The core objective of the paper is practical. Readers without a statistical
background can easily implement the method. Annexes are provided to
show how, with just six key piecesof information, anyone can solve the
optimal sample size problemin a spreadsheet. An automated spreadsheet
algorithm is avail able from the authors on request. To run the program
al the user has to do is enter the key data and then activate a macro tha
automatically computes the optimum number of additional observations
needed to augment any initial “small” survey sample.
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THE INVESTMENT PROJECT ANALYSISCONTEXT

Many multilateral financia ingtitutions require that investment project proposals be screened using economic
analysis, preferably of the cost-benefit (CB) rather than the cost-effectiveness variety. In recent years,
contingent valuation (CV) has become the preferred route in some of these institutions for estimating the
benefits yielded by investments aimed at improving amhient air or water quality (Ardilaet al. 1998). An
issue that is repeatedly raised by those responsiblefor actually doing the analysis (staff economistsand their
counterparts inthe executing agencies of prospective borrowing countries) is“How many subjects should
be interviewed in a CV survey to produce areliable estimate of per capita or per household benefits?’

It would be hard to disagree in principle with Mitchell and Carson’s (1989, p. 223) admonition that “No
matter how realistic the scenario, the data cdlected from even the best contingent valuation survey
instrumentsare useless unless sample statistics of sufficient quality for policy purposes can beabtained.”
In practice this message is often lost in decision-making, even when investments of a quarter of a billion
dollars or more are at stake. In testimony to its obscurity, no guidelines on sample size selection exist in the
economic analysis pratocols of the Inter-American Development Bank, and our conversations with
economists a sister lendinginstitutions suggest that they are perplexed as well !

In these days of low overheads and limited budgets in puldic sector and international institutions involved
in grant or loan financing of projects and programs, management is justifiably reluctant to overspend on
project preparation. One high level IDB executive with considerable expertise in economic analysisremarked
to the authorsthat he suspected, without |ooking deeper into the question, that CV samplesin the area of 250
interviews would probably be sufficient for areliable CB project appraisa. The literature contains little that
refutes this conventional wisdom.

Standard Sub-optimal Approaches

In their seminal book on CV, Mitchell and Carson (1989) suggest that, based on a simple statistical tolerance
formula, sample sizes between 200 and 2500 are probably appropriate (Chapter 10, footnote 13, p. 225),
assuming a best guess of 2.0 for the coefficient of variation which drives the calaulation. The academic
literature on CV has little more useful to say. Instead, and perhaps quite realistically, it devotes a great deal
of effort to algorithms for figuring out how many bid groups should be used in a referendum CV survey, and
how many interviews should be allocated to each, taking the totd sample size as exogenously set by the deus
ex machina of research funding limits (Cooper 1993, p. 28).

Given the paucity of guidance, determining an appropriate sample size is often handled loosely by everyday
practitioners in government and internaional agencies, whose work is often underfunded and fast-tracked.

! In the only known internal 1DB source discussing samplesize, Vaughan (1994) looksat the size of asample of
projects needed to confirm the overall economic viability of so-called “multiple works programs’ which are designed to finance a
group of similarworks, of which only a subset is exposed to ex-ante economic analyss. The issue of CV sample sizeis not
addressed therein. At atraining workshop on CV presented by the authors at the World Bank in June 1999, the sample size
question was raisad by the audience, but we were unableto provide a wholly satisfactory answer beyond intuitively suggesting
that samples between 500 and 1000 usable observations probably would be sufficient.



Budget considerations play a predominant role. But, does it make any sense to divide a predetermined budget
amount (net of fixed costs) by the cost per interview to get to a CV survey sample size? What determines the
level of the budge for analysisand CV surveying? Yet, isit any more legitimate to challenge any budget
ceiling on the basis of a statistical tolerance formulathat says “We need N interviews to produce a sample
estimate of mean willingnessto pay (WTP) that comes within £ X percent of the true population mean with
(1-a) percent confidence?’ Thereis no particularly strong rationale for choosing a percentage difference of,
say, 5% rather than 10% between the true popul ation willingnessto pay and the sample mean, or any reason
other than custom for selecting a significance level, o, of 1% rather than 5%.

Argumentsfor augmented survey budgets along theselines are unlikely to be persuasive to those who must
allocate limited resources. Without a criterion that balances the value of additional information provided by
larger samples with the cost of collecting them, the only recourseisto fall back on rough statistical rules of
thumb (Mitchell and Carson 1989) or do one’s best with whatever funds are made available.

Seeking Optimality

The immediate objective of much CV work is valuation per se, that is, estimation of the value of natural
assetslike protected areas, or the benefits of ambient quality improvement. While these CV values may serve
asinputsinto the assessment of the prospective monetary gains and losses of dternati ve investment decisions
or courses of environmental policy action, that subsequent decision analysis is often someone elsés
responsibility once the job of the CV expertsis done When the CV exerciseis effectively sealed off from
the policy or investment decision step, CV researchersworking in isolation have no recourse but to satisfice
when it comesto samplesize, choosing asize N that somehow is defensible or appears reasonable. However,
investigators using contingent valuation results directly in cost-benefit analysis have a hidden advantage that
can be exploited to reach a much more persuasive conclusion about the optimal CV samplesize. This paper
explains how the vaue of additional sampleinformation can be quantified (either approximatdy or precisely)
and balanced against the cost of obtaining it. Tha valueis closely related to the way thedistribution of the
investment’ s expected net present value reacts to the size of aCV sample.

The optimal sample size approaches explained herein have their originsin Schlaifer’ s (1959, 1961) Bayesian
decision analysisapproach, which is discussed in an accessibleway by a number of standard texts on the use
of statigtics in business decision-making (Bonini et al.1997; Jedamus and Frame 1969; Ffaffenberger and
Patterson 1987; Lapin 1994; Winkler 1972). For a rapid Bayesian analysis, an approximate normeal
probability distribution for NPV can be obtained by constructing a simple alinear relation between it and
sample estimates of the mean WTP and its standard error. Larger CV samples reduce the uncertainty about
willingnessto pay (reduce the standard error of mean WTP) and about NPV as well, where the compression
in variance (uncertainty) with increasing sample size is transmitted through the linear relationship. By
monetizing variance reduction in this way, the marginal costs of expanding sampe sizes can be compared
to the marginal benefits of the additional information they contain to reach an optimal samplesize decision.

Alternatively, the linearity assumption linking NPV to mean WTP may not hold, and NPV may not be
normally distributed even if WTP is, because other random influences on NPV skew the distribution of the
outcome. A more precise Monte Carlo risk analysisin the Bayesian mold can be employed to characterize
the way theempirically generated probability distribution of NPV reects to beter informationon WTPto
verify the approximate optimum based on the normality assumption.



Optimal Results Without Pain

Anyone can implement the method devel oped in the remainder of this paper using a spreadsheet algorithm
in Quattro Pro that is available from the authors on request.” The optimization routine presumesthat an initial
small survey sample has dready been taken, and asks whether it would be optimal to add to it in asecond
round of sampling. To run the program all the user has to do isclick on an “Optimizer Macro” button to
computethe optimum number of additional observations needed to augment an initial “small” survey, if any.
The data entry and output results forms are shown in Table 1. Annex 3 to this paper contains thefull set of
spreadsheet instructions.

Table 1. Quattro Pro Macro: Data Input Form and Optimal Results Summary Output

DATA ENTRY INSTRUCTIONS:
. ENTER DATA IN
STEP I. ENTER THE INITIAL SMALL SAMPLE DATA Units Data Entry BOX AT LEET
Size of Initial “Small” Sample? # of Cases 250
Sample Mean Willingness to Pay? $/Household/Unit Time $7.47
Variance of Sample Mean? $/Household/Unit Time 0.70
Sampling Cost per Household Interview? $/Case $89.00
STEP II. SPECIFY THE LINEAR CVPI FUNCTION RELATING NPV TO WTP ( NPV = & + [3 eMEAN WTP)
$ Total Discounted Costs
? -
Intercept (&) ~ [Enter as Negative #] $594,653,984.00
# of Beneficiaries
s
Slope (B) [Total Discounted] 100,988,487
AND THEN
RESULTS
STANDARD ERRORS OF NPV AWAY FROM NPV =0 1.89

SHOULD A SECOND SAMPLE BE TAKEN TO AUGMENT THE INITIAL SAMPLE? Probably Yes

HIT THE OPTIMIZER

IF "Yes" CLICK ON THE BUTTON AT THE RIGHT TO RUN THE OPTIMIZER MACRO BUTTON
Approximate Sample Size (Used as a Starting Value for Optimization) 2,793
PROGRAM
EXACT OPTIMUM 2,378 RETURNS THE

OPTIMUM

Note: This routine assumes the analyst has no prior knowledge aboutaverage WTP or its variance

beyond what the initial "small" sample reveals. Neither the authors nor the Inter-American Development]

Bank warranty this program or the methods it employs.

Only six pieces of input information are needed: (1) the size of theinitial small CV survey sample, (2) the
expected value (mean) of willingnessto pay (WTP) extracted from that sample, (3) the variance of mean
WTP, (4) the average (equals marginal) cost of collecting a single survey observation, (5) the intercept of

2 Contact William J. Vaughan by e-meil at williamv@iadb.org and ask for the “Sample Size Template”. Indicate
whether you will be using Quattro Pro versions 6, 7 & 8 or Quattro Pro Version 9. Thetemplate is not available in Microsoft
Excel.



alinear function (called the CVPI function) relding NPV to WTP and (6) the slope of the linear function.
All but the last two are obvious. The intercept and slope of the CVPI function are al so easy to get, without
doing a complex cost-benefit analysis beforehand. The intercept is just the discounted sum of project
investment and operating costs (net of any non-CV benefits, if they exist). The slopeisjust the discounted
sum of the number of beneficiaries to whom mean WTP benefits from the CV survey are attributed.
Subsequent sections devel op the rationale for the proposed method and explain each step in detail.

Anticipating the Optimal Resultsfor a Case Study Example

It isaways difficult and perhaps even dangerous to make generalizations about optima samplesize. The best
sample size is always case specific because it depends on the cost and benefit flows of the prospective
investment under consideration. Yet there is a general pattern: the better the project appears ex-ante the
smaller the CV sample size needed to obtain the benefit estimates that justify it. Given the investment cost
and return data for the worked exampleused later, the total sample size required depends critically on just
two pieces of information: the standardized distance of expected NPV from zero and the unit variable cost
of collecting asingle WTP survey response. In our experience in Latin Americaand the Caribbean, sampling
costs will be high if an interview costsaround US$100, and moretypical if interviews cost about US$20 to
US$35 each.

The remainder of this paper uses actual data from a case study to illustrate the general principle that the
optimal sample sizefor CV surveysis a decreasing function of how good the project appearsto be ex-ante
The results are based on the benefits and costs of a proposed project to clean up the Tieté River in Sdo Paulo,
Brazil (for details about the project see Russell et al. forthcoming and Vaughan et al. 1999, 2000a, 2000Db,

, , _ 2000c).?
Figure 1. Sample Size Depends on Project Prospects
Sanpﬁgméﬁaﬁlﬁlfmuh‘:f Figure 1 shows the results of calculating the
oo optimal sample size for 100 randomly drawn
B o000 T values of mean WTP and its standard error,
t{E &000 assuming a high cost of sampling o R$89
& 7000 (US$100) per interview. The figure shows that
A 6000 investments with a high likelihood of success
8 nn- (expected NPV more than two and one half
& a0 standard errors from zero because the mean WTP
E is high and the variance of the mean is low)
o require very little sampling effort beyond taking
£ 2000 asmall sample of 250 or so dbservations.
1000
I An ex-ante specuation about the chances that a
0 05 ¢ 15 2 25 3 35 4 45 5 55 6 65 7

Standard Erors of E(NPV) from Zev project will succeed measures the degree of

% The figure assumes an initial small sample of 250 cases has already been taken and shows how many cases should be
added to it. To generae the figure, thebaseline deterministic cost and energy benefit flows from the case study example
discussed in Vaughan et al. (1999, 2000a, 2000b,and 2000c) were combined with mean WTP estimaes that were randomly
drawn from a uniform distribution covering R$5.89 to R$13.00, which spans most of therange of the estimates discussed in
Vaughan et al. 1999 and Vaughan et al. 2000a, 2000b, and 2000c. The variance of each mean was derived from arandom draw
of values of thecoefficient of variation between 0.75 and 6.0, following Mitchell and Carson (1989, p. 225). No prior
information about themean WTP or itsvariance wasincorporated, in contrag with Table 1, which includes some runs with tight
priors.



confidence. Extremely promising projects have large positive expected net present values (NPVs), while
marginal projects have NPV's near zero. By dividing the expected net discounted benefits of any project by
the standard error of the mean NPV any investment can be put on a commensurate scale that has a ready
interpretation from basic statistics. Assuming approximatenormality inthe distribution around the estimate
of expected NPV, projects whose standardized NPV is morethan 2.33 standard normd deviates from zero
have a 99% chance of being successful, projects that are 1.28 deviates above zero have a 90% chance of
success, and so on down the line. Aninvestment whose standardized NPV isexpected to beonly slightly
above the critical value of zero will fail half the time so it only has a 50 percent chance of success.’

A compact summary of the results of alarge number of other Bayesian optimization exercises not shown in
Figure 1 appearsin Table 2.

Table 2. Range of Nearly Optimal Total Sample Szes from the Tieté Case Study Data

Chances of Over 99% 90% to 99% 50% to 90%
Project Success
Interview Cost in Latin Americ [>2.33 SE] [1.28t02.33 SE ] [0t01.28 SE]
High (Brazil: US$ 100 per I nterview) 250 to 1150 250 to 3300 1600 to 8600
Typica (US$35 per Interview) 250 to 2000 250 to 5200 3000 to 14400

The optimal sample sizes® reported for variations on the case study data alone cannot be generalized to other
situations. But exact optimal sample size answers can easily be found for any specific investment project
using the optimization algorithm supplied in Annex 3. The interesting characteristic demonstrated by the
results from the case study is that no specific sample size, either large or small, is desirable across the gamut
of situations.

Before getting involved in the detail s of the optimization approach, severa variants of the standard classical
method areillustrated next using contingent val uation survey datathat was collected in 1998 to estimatethe
water pollution control benefits of the Tieté project. The results of exploring several different sets of
assumptions with the classical sample size selection method reveal just how little guidance it actually
provides. Then, small sample means of WTP and their variances are constructed from the data before moving
on to explain and apply the principles of sequentid optimal sample s ze determination using data from a
small initial sample as a point of departure.

* To arrive at these percentages, the normal distributionin question must be centered on the expectaion of NPV, not
on zero.

® The minimum sample size is 250 cases because asmall initial sample is needed to jump start the optimization routine.
The net benefitsof increasing thesample size above 250 casesriseinitially at argpid rate and then become almost flat over a
wide span ( 20 to 30%) around the optimum. Consequently, the sanple sizesin Table 2 are termed near optimal because the
additional cases needed beyond the minimum of 250 have been scaled back to 70% of the optimum following Schlaife (1961,
Figure 21.5, p. 337); they are lower bound ranges.



THE STANDARD APPROACH TO SURVEY SAMPLE SIZE
DETERMINATION: VARIATIONSON THE THEME

For itsreferendum CV questionnaire to estimate willingness to pay for improved water qudity in the Tieté
River, the original project analysis drew a sample based on household characteristics drawn from a 1996
survey of households in the Sad Paulo Metropolitan Area (SPMA). The strategy was to represent the
population of S&o Paulo in terms of the factors thought to have a strong influence on willingness to pay. In
theory such factors might include the household’s income and its perception of odors from the river,
environmental awareness, and education. Of these, the Census only had information on income and
education, which are highly correlated.

According to the Census the average household income in the SPMA is R$828/month with a standard
deviation of R$702. Using a 95% confidence interval and a 10% sampling error, the origina analystsfigured
that a sample of 276 homes would be required. The necessary sample size wasiinitially calcul ated based on
the amount of tderable error in the sample estimate of mean income rather than mean WTP (which was
unknown), using a standard statistical formula that acknowledges only Type | error (e.g. Paffenberger and
Patterson 1987, p. 389).

The standard formula used was:

N = [z, 0/E]? = [(1.96* 702) / 82.8] = 276

where:
N = desired sampl e size
zZ = the 95% confidence interval gatistic (1.96) at significance level a = 5%, 2 sided test.
o= standard deviation of income (R$702).
E = acceptableerror (R$82.80) in the sample estimate of the population mean WTP obtained as

one-tenth of census estimate of average household income of R$828 (i.e. a 10% error).

Note that the variable of interest is household willingnessto pay (WTP), not income, so the above application
of the standard sample size formul a only holds if the mean and standard deviation of WTP bear a fixed
proportional rdationship to the mean and standard deviation of income, which is unlikely.

In asecond line of attack, the analyst might try to formulate explicit prior beliefs about the population mean
and standard deviation based on historical experience and proceed from there. For instance, assume asimple
distribution for willingness to pay, such as the triangular. The mean and standard deviation can easily be
obtained from this distribution givena guess about just three values; the minimum, the most likely, and the
maximumWTP (Vose 1996, p.88):

Mean, Triangular = (a+b+c)/3

Variance, Triangular = (& + b*+ ¢ - ab- ac-bc) / 18



where:
a= Minimum; b = Mode; ¢ = Maximum

Establishing the minimum WTPis easy if the investment improves utility or at least does no harm; so it can
be safely set to zero. For the maximum, we know from experience that, on average, people are willing to pay
about three to four percent of income for sewer connections and that the willingness to pay for ambient water
quality is, on average, less than one-third of that (Ardila et al.1998). So the maximum of WTP could be set
to what households are willing to pay for sewer connections—around 3% of income. If income is
approximately right-triangular distributed the maximum income is three times the mean of R$828, or
R$2484. Then, the highest individual observation of WTP would be 3% of R$2484, or R$74.52. The moda
valueis moredifficult, but Choe et al. (1996) found that willingnessto pay for water pollution control in the
Philippines was only about 1 % of income, which is consistent with our experiencein Latin America (Ardila
et al. 1998), yielding amost likely value of R$8.28. Then, from the triangular distribution formulasthe prior
mean WTP becomes R$27.60, the variance R$346.93, and the standard deviation, o, R$18.63.

As before, if the sample is to come within + 10% of the mean, E = R$2.76. Then:
N= [z, o/E]* = [(1.96*18.63) / 2.76]" = 175

Thisrecommendation for avery small sampleis based on ostensibly reasonable guesses. As we will seelater,
these prior estimates turn out to be extremely poor when compared to the mean and standard deviation of the
actual sample data.

For another variant of the same game, suppose we believe the average WTP per householdis 1% of income,
or R$8.28 and that the most frequert response (the mode) is zero. Thisyields aright triangular distribution
with a=0 and b=0. The implied maximum WTP, c, is 3 times R$8.28, or R$24.84 and the variance is just
c?/18, or R$34.28, yid ding 0 = R$5.85. Again, if the sample is to come within + 10% of the mean, E =
R$0.83 and another recommendation for a small sample results:

N= [z, 0/E]? = [(1.96*5.85) / 0.83] = 191

Finally, for afourth route, Mitchell and Carson (1988, p.224) suggest a clever manipulation of the standard
formula above that obviates the need to guess about ¢ or the absolute magnitude of acceptableerror in the
mean of WTP. Instead, a guess aout the ratio of the standard deviation to the population mean (the
Coefficient of Variation, V) is required; Mitchell and Carson suggest avauefor V of about 2. At the =5%
level, using V=2 and A of 10% as an acceptable difference between the true population mean WTP and the
sample estimate;

N=[ (z,, V) / A ]2 = [(1.96+2.0) / 0.10] = 1537

The four standard routes to sample size determination illustrated above lead to quite different answers
because the first three implicitly assume the value of V isless than 1.0 and therefore recommend small
samples (i.e. the V values are R$702/R$828 = 0.85; R$18.63/R$27.60 = 0.68; and R$5.85/R$8.28 = 0.71)
rather than the value of 2.0 reflecting Mitchell and Carson’s review of actual contingent valuation surveys
in the 1980s, most of which wereundertaken in developed countries.

The guessing game played above could go on ad-infinitum without ever producing a firm conclusion about
the reliable sample size needed for any particular CV survey. Although it would seem to suggest that, in
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developing country applications, small samples will suffice, that is an erroneous generalization. The rest of
this paper will show that small samples sometimes suffice, but the classical method fails to isolate the
circumstances under which it is safe to take a small CV survey sanple rather than abig one.

In any event, the first result, 276 households, was not used for the Tieté referendum CV survey. Neither were
the second or third of 175 and 191 cases or the highest estimate of 1537 from Mitchell and Carson’s route.
Instead 600 interviews were actually undertaken for the project analysis, split between two sub-samples to
account for the distance effect on WTP (184 households living in districts bordering the polluted river and
416 living farther away and presumably less affected by its noxious odors and health risks). Even though the
variable cost of each interview, US$100, was fairly expensive,’® the available budget permitted an expenditure
of US$60,000 to take a larger sample and get more precise results than the lowest estimate of US$17,500
could provide, but not aim for the tighter variances from 1537 interviews that could be purchased for
US$153,700. The question is, which of the sample size estimates, in retrospect, comes closer to the optimal
size? The answer lies beyond the quick and convenient, but imprecise and arbitrary, classical method.

® This value was equal to $114 Brazilian reals in 1998. For the losscost exerciseit must be put on equal terms with the
value of information, which is shadow priced in the project analysis. Multiplying it by the shadow price of non-tradezble inputs
of 0.78 gives avariable (equal to marginal) cost per observation of R$88.92. CV surveysin Latin America usually do not cost
this much; costs aound US$30 per case have typically been quoted (Ardila et. al. 1998).

8



STARTING TOWARDSAN OPTIMAL SOLUTION: SMALL SAMPLE
MEANSAND THEIR STANDARD ERRORS

The next step toward an optimal answer begins with the collection of an initia small CV survey sample (say,
250 cases) and the calculation of the mean WTP and its variance. With this information in hand, the
researcher can then proceed to ask whether additional sample information would be desirable, following the
optimization procedure explained subsequently.

But first, initial edimates that characterize the distribution of WTP are needed. In the case of WTP, the
standard error of the mean can, in principle, be reduced by increasing the sample size. However, estimation
of this effect using conventional parametric techniques on referendum CV data is problematic, since
analytical formulas are generally lacking.” However, the nonparametric estimators (McConnell 1995; Haab
and McConnell 1997, Vaughan et al. 1999, Vaughan et al. 2000a, 2000b, 2000c) directly relate the standard
errorsof lower bound, intermediate or upper bound mean WTP estimates to sample size, and these formulae
can be exploited to help computethe optimal sample size (see Annex 1). Alternatively, an initial open-ended
rather than referendum CV survey could be conducted and the mean and its standard error calculated directly
from the explicitly stated WTPs of the respondents.

To demonstrate, a balanced random sub-sample of 250 observations was drawn from the actual 600
observation grand sample of Tieté CV survey interviews? We chose a size of 250 in order to have a
reasonable minimum number of observations in each of the five bid groups in the referendum. Unlike the
grand sample, thesmall sub-sample was deliberately drawn to be represent ative of the spatial distribution
of the respondents, so the distinction between the WTPs of residents living close to and far from the river
can be dropped, which simplifies the sample size selection problem. Table 3 presents the small sample
estimates of the nonparametric means and their variances, and Annex 1 provides the details.® Our prior

” The parametric approach requires that a conditional cunulative density (or survival) fundion be statistically fit to the
data and, subsequently, an expected value extracted using formulae that are functions of the estimated parameters of that assumed
density (usually Logistic, see Vaughan et al. 1999, 2000a, 2000b, 2000c). Lacking analytical formulas, the mean standard error
must be found either via the delta method (a second-order Taylor series approximation of an unknown variance function which
itself depends on thestandard errors of the survival function parameter egimates) or by bootstrapping.

8 The actual 600 observation referendum CV sample from our case study was unbalanced because it undersampled
households living in districts that are contiguous to the river (31 % in the sample, 61 % from the metropolitan area census). Since
households living in districts bordering the river are willing to pay significantly more on average for improved water quality than
households in noncontiguous districts (R$6.07 per household per month versus R$4.51) the mean from the grand sampleisa
biased estimateof the population’s average willingness to pay. We corrected for this by randomly drawing 250 observations from
the grand sampleusing the constraint of the census proportions, which meant that 152 of the 184 available households living
close to the river were included in the small sample, alongwith 98 of the 416 families living inmore distant districts.

® The variance estimates in the table were independently verified by smulation, drawing from separate binomial
distributions refleding the number of “No” answersineach bid group and repeaedly calculating the mean 5000 times. The
standard errors of the means matched those from theanalytical formulas provided in Annex 1. For the balanceof the discussion,
the approximately equal allocation of cases across bid levelsis taken as given, ignoring the possibilities for variance reduction at
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guesses for mean WTP and the population standard deviation in the section on the standard approach did not
turn out to bevery prescient, although setting theaverage WTPat 1% of income comes close (R$8.28).

Table 3. Small Sample Nonparametric M eans

Standard  Population
Variance Error of Standard

Estimator Mean of Mean M ean Deviation ?
Turnbull Lower Bound 5.75 0.45 0.67 10.61
Weighted Turnbull (0.75) and Paasche (0.25)  7.47 0.70 0.84 13.23
Kristrom's Intermediate 9.20 1.02 1.01 15.97
Paasche Upper Bound 12.66 1.88 1.37 21.68

Note:
a. Approximationfrom the squareroot of the product of thevariance of themean and the sanple size, 250.

To jump the gun a bit, what would the classical method recommend if our guessesfor u and o were exactly
equal to what the actual sample revea s? The Turnbull mean WTP is R$5.75 and the sample estimate of the
population standard deviation is R$10.61 (the standard error of themean multiplied by the square root of
250). Applying the familiar formula, the recommended sample size under these nearly perfect guesses would
be large indeed, and very close to what Mitchell and Carson's approach recommends:

N=[z,, o/E]* =[(1.96*10.61) / 0.58]* = 1286
Similar calculations for the other meansin Table 3 also yield sample sizesof around 1200 cases.

Unfortunately, following the recommendation of the classical method, even if it is based on actual sasmple
information, is potentially misleading. The optimel Bayesian decision under the baseline corfiguration of
net project benefits and sampling costs, assuming a mean WTP of R$7.47, recommends a sample of over
2000 observations, as demonstrated below. In short, the standard dassical method is no more useful than a
dart board. On the other hand, the optimization approach is more useful, but the optimal solution is extremely
sensitive to the choice of nonparametric mean, which is ultimately a subjective decision.” For the balance
of this paper, our preferred mean is the intermediate nonparametric mean composed of a weighted
combination of the Turnbull lower bound mean (75% weight) and the Paasche upper bound mean (25%
weight).

any given total sample size that might be achieved by concentrating the bulk of the sanple in the region of bid levelswhere F. =
0.5.

19 See Vaughan et al.1999 for areview of parametric versus nonparametric means.
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PRELIMINARIES ON PROJECT RISK, THE VALUE OF INFORMATION
AND LOSS-COST MINIMIZATION

The anaogues of the decision analysis approach to sample design ingeneral (Schlaifer 1959, 1961) and in
statistical quality control applications in particular (Vaughan and Russell 1984, Russell, Harrington and
Vaughan 1986) provide the keys to unlocking the optimal CV sample size problem. Somewhat |oosely stated,
the core concept involves finding the sanmple size that minimizes the sum of sampling costsand expected
losses.

The pure form of the optimal sample size approach involves Bayesian decision analysisand expands on the
concept of prior information that was employed above in the second and third variants of the standard
approach. It combines prior subjective characterizations of the probability distribution of mean willingness
to pay with datafrom an initial “small” sample of, say, 250 cases to decide whether an additional round of
sampling should be undertaken and, if so, how many subjects should be interviewed in that second round.
Schlaifer (1961) callsthis Bayesian * preposterior” decision-making about the desirable sample size because
adecision can be reached on the basis of partial information before actually doing any additional sampling.™

Expected Gainsand L osses

In the terminology of decision analysis, the CB decision is atwo-action problem with infinite states of nature.
The investment proposal can either be accepted if in expectation it will yield a positive discounted net cash
flow above the break-even point of NPV equal to zero, or rejected if it does not. Because the many influences
on NPV are random variables, so isNPV. Therefore, at |east conceptually, there are an infinite number of
possible net cash flow values, each withits own probability of occurrence.

CB risk anaysis accommodates the variance in benefits and other variables, so the risk-neutral decision rule
(Brent 1996) is clearer than it would be in a detemministic analysis that inconsistently combines extreme
values for some variables with various measures of central tendency for athers. The rule is to proceed with
acapital investment project if the expected value of its discounted stream of net benefits, E(NPV), is non-
negative; but if the expectation of discounted net benefits is negative the project proposal is economicdly
infeasible. In the probabilistic context of risk analysis, following this expected value decision rule has a
guantifiable cost called the cost of uncertainty.

The cost of uncertainty is the expected oppartunity loss of making the decision determined by the decision
rule. That is, if the expectation E(NPV) taken over the entire NPV distribution is non-negative, the

™ |n Winkler's (1972, p. 297) words, “This type of decision is called apreposterior decisionbecause it involves the
potential posterior distributions following the proposed sample.” Winkler notes that preposteior analysis can be carried out
repeatedly in sequential decision-making. Our proposal involves a two-step sequence of taking an initial “small” sample and then
doing a preposterior andysis that looks for the optimal numbe of surveysto add to the initial sanple, which can eithe turn out
to be zero or some postive number. Of course, in some drcumstances theinitial sample dze itself may be suboptimal (too large),
but then there will beno need to add to it.
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investment will be made. But if some portion of the NPV distribution fdls below zero, actual losses in
specific instances are still possible. The cost of uncertainty can therefore be measured asthe mean of that
portion of the NPV distribution truncated from above at zero (the average loss, given that aloss might indeed
occur), multiplied by the probability of a negative NPV occurring. If the project is not undertaken because
the expected value of NPV is negative, the investment will not be made, thus foregoing any possibility of
positive net returns. Symmetrically, the loss in this situation is the mean of that portion of the NPV
distribution truncated from below at zero (the average net gain foregone, gven that a net gain might occur),
multiplied by the probability of a positive NPV occurring.* The two opportunity loss situations are pictured
below.

If the project is economically feasible its global mean NPV will be non-negative. The prgect will be
undertaken so the region of opportunity loss is from negative irfinity (or the minimum possible NPV) to
zero:

Casel: Project Feasible: Correct Decision isto | nvest

+))))))Region of Losses, NPV<0)))), +3))))))))))))))))) Region of Gains, NPV>0 )))))))))))),
l | | | |
-0 or Min NPV E(NPV) | NPV<0 0 E(NPV) +o0 or Max NPV

If the investment s expected NPV is negative it should not be undertaken, thus foregoing some possible gains
lying in the region of opportunity loss from zero to plusinfinity (or the maximum possible positive NPV):

Casell: Project Infeasible: Correct Decision isNot to I nvest

+3))))))))))))))))))Region of Losses, NPV<0))))>)))))))))), +)))) Region of Gains, NPV>0 ))))),
| | | | |

-0 or Min NPV E(NPV) 0 E(NPV) [NPV = 0 +oo Or Max
NPV

Table 4 provides more formal definitions of the decision criterion, the probability of opportunity loss, the
truncated mean loss and the cost of uncertainty. The cost of uncertainty (E ., or E . ,, in the table) isin
part a function of the amount of prior subjecti ve and sampleinformation size on hand when the options are
weighed to ather invest immediately or wait and collect moreinformation At the point after a small initial
sample of size N, is taken (or even before when a prior guess is formed without any sarmpling at all) it
represents the most the investor would be willing to pay to gather more information and eliminate all
uncertainty about the project, whichiswhy it is also called the expected value of perfect information, EVPI.

Additional sampling can never eliminate all uncertainty. But changesin E ., (or E . ) Withincreasesin
sample sizebeyond the ariginal amall sample N, provide a measure of the gross benefit of the second stage
of asequential CV sampling scheme. Incremental CV samples with AN>0 reduce the standard error of the

2 Only if the probability distribution of NPV lies entirely in either the positive or negative domainswill there be no
cost of uncertainty because you literally can’t go wrong; either an unattrective investment is unambiguously bad over the entire
range of NPV outcomes or no |osses are possble because thereis zero probability that NPV will fall bdow zero. In either of
these extremesituations, case-gecific sample estimates of willingness to pay may not even be necessary. If extremeupper and
lower limits for willingness to pay can be posited a-priori via benefits transfer or other past experience, and the investment either
fails the CB ted using the highest possible WTP or passesit using the lowes conceivable non-negative WTP value the
investment decision can be made without incurring sampling costs.
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CV mean estimate of project benefits (WTP), which transmits into a reduction in both the truncated mean
lossin project NPV and the cumulative probability of that |oss.

Table 4. Fundamental Definitions

Casel Casell
Correct Decision: I nvest Correct Decision: Don’t
E(NPV)> 0 I nvest
E(NPV) <0
Decision Criterion: Global Mean o
NPV E(NF’V):f NPV, e p. d NPV
Probability of O pportunity L oss 0 +00 or Max
FLosslzf p, d NPV Flos =f p. d NPV
-00 or Min 0

Truncated M ean L oss

E,, = E(NPV | NPV<0)

0
={J NPV, * p dNPV}/ F

=00 or Min

E:;, = E(NPV | NPV>0)

+00 or Max
= {j NPV, * pdNPV}/ F .,
0

Cost of Uncertainty or Expected
Value of Perfect Information or
Expected L oss of a Terminal Action®

Elos1 =Er * Flosi

Elost = B Flossu

a. Theseterms dl appear in the literature and they all mean essentidly the samething. It may seem unnecessaily roundabout
to express the cost of uncertainty & the product of atruncated mean and thefraction of the totd probability distribution
lying in the region of opportunity loss. However, thisis necessary given the way the informetion is produced by the
Crystal Ball MonteCarlo simulation routine we used to verify the approximete solutions in the worked examples

b. The probability of occurrence of the i NPV is represented as p; in the table.

Value of Information: Variance Reduction Through Sample Size Increases

Given any initial referendum CV survey’'s sample size and the prospedive investment project’'s NPV
estimates based on the survey’s mean WTP, decisionmakers can either finalize the project
acceptancelregjection decison or commission further studies to try to reduce the uncertainty about the

outcomes.

Only information about the factorsthat can have a significant impact on the project outcome reduce the cost
of uncertainty in a meaningful way; in most cases uncertainty about benefits will be a major influence
(Vaughan et al. 1999, Vaughan et al. 2000a, 2000b, 2000c). The value of information is the change in the
cost of uncertainty occasioned by gathering additional information. The vdue of information must be
compared with the cost of information. If the value exceeds thecost, it is worth doing addtional sampling
to gather more information; otherwise the project should be accepted or rejected on the basis of the

information on hand.
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To sum up in words, the steps to find the optimal sample size via Bayesian decision analysisin a sequentid
approach are:

(1) Postulate an a-priori guess about the expected value of WTP per household (or per person) and
areasonable opinion about the range in the expected value.

(2) After the survey focus group sessions and the pre-test, draw a small initial referendum CV
sample (e.g. N, of around 250 observations, say 50 in each of 5 bid groups) and administer the
final questionnaire. Cal culate a nonparametric sample mean WTP per household, the variance
of the sample mean, and the dandard error of the sample mean. Approximate the population
variance, 02, as the product of the initial sample size N, and the estimate of the variance of the
sample mean.

(3) Do aninitial economic project CB analysis to estimate the expected value of discounted net
benefits, E(NPV), at baseline conditions. Determine whether the ogpportunity |oss follows Case
| (project acceptance) or Case Il (project rejection) and locate the region of opportunity loss for
NPV. Establish the parametersof alinear relationship between the expected value of opportunity
lossin NPV and the expected value of WTP.

(4) Combinethe prior guesses from Step 1 with the sample WTP information from Step 2 following
aBayesian formulato develap posterior estimates of the mean and standard error of WTP.

(5) Using the posterior estimates from Step 4 as prior estimates, hypothetically increase the sample
size from the base used in Step 2. Repeatedly compute the reduction in the variance of mean
WTP that would result posterior to sample augmentation over arange of samplesizes AN above
theinitial base N = N,.

(6) Assume the expected value of NPV is normally distributed. Using the linear relationship
between NPV and WTP from Step 3, monetize the reduction in variance in the expected value
of NPV losses associated with different degrees of augmentation of the original sample. These
reductions in the expected cost of uncertainty (E, ., Or E_.  as the case may be) from a second
round of sampling represent the expected value of additional sampleinformation, EVSI, or the
benefits of sample augmentation.

(7) Over arange of hypothetical ANs above zero, numerically compare the expected value of
information contributed by an additional sample observation (i.e. successive changesin the cost
of uncertainty obtained in Step 6) to the marginal cost of a sample interview. Find the sarmple
size where the marginal value of information is approximately equal to the cost of an additional
referendum CV interview (for simplicity, assumed equa to the variable sampling cost and hence
constant). The result is the optimal (additional) samplesize, AN*. The total sampling effort N,
will thus equd N, + AN*. The original small sample will be adequate if AN* equals zero.®

The first two steps have aready been covered. The next section explains the rest of the above stepsin detail.
A subsequent section simpli fies the procedure by eliminating the need to formulate priors (Step 1). Then,

13 |f amore precise measure of AN* is desired because the normality assumption isin doubt, a full Monte Carlo CB
analysis can beundertaken to computethe EV Sl empirically and find AN*.
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the approach is demonstrated using the case study project datain aworked example, assuming tight, diffuse,
and nonexistent prior judgements. The effects of project cost increases on the optimd sample size are
explored, and conclusions drawn.
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AN OPTIMIZATION METHOD FROM BAYESIAN DECISION
ANALYSIS

The Linear Payoff Function

The first key to implemerting Schlafer’s (1961) approximate optimization method is the linear payoff
function. It describes the relationship between the quantity measured by the sample (mean WTP in this
instance) and the payoff decision variable that depends on the sasmple information, in this case the expected
value of NPV. This function is a compact summary of the CB analysis. Net present value is written as the
linear relation E(NPV) = -« + BsE(WTP). If the expected value of WTP from a CV survey isthe only source
of benefit, the intercept, - a, representsthe sum of discounted capital and operating costs of the investment.
If there are any other sources of benefit (suchas our energy generation benefits) they can be netted out of
the discounted coststo get the intercept. The Slope, 3, isthe marginal contribution to discounted net benefits
of an increase in average WTP per household (undiscounted).™ It too can be easily calaulated by simply
taking the present value of the number of beneficiariesto whom the mean WTP is applied over the project’s
lifetime. For our case study E(NPV in R$) = —594,653,964 + 100,988,487 «E(WTP)."*

Given thislinea relationship beween discounted profits and household WTP, if the sasmplemean WTPis
normally distributed, the outcome variable, E(NPV) will also be normally distributed with mean E(NPV) =
-o. + [3 « E(WTP) and variance VAR(NPV) = 32 « VAR[E(WTP)].** The break-even valuethat sets E(NPV)
to zero is W, = «/P, = 594,653,964/100,988,487, or R$5.89. For any expectation of WTP less than .,
opportunity lossesin NPV will be incurred. From Table 4 it is clea that all of the nonparametric sample
means other than the Turnbull lower bound mean WTP are above the break-even value, so the correct
decision isto invest.'” But, the sample mean is arandom variable so there is some non-zero probability that
it could be below the break even value. For example, the preferred measure, a 75-25 weighted combination
of the lower and upper bound means from Table 3, is R$7.47, and its standard eror is 0.84, putting the

14 |t is assumed that in the CB analys's of the investment, per household (or per capita) WTP benefits are multiplied by
the size of the bendficiary population in every yeer to obtain aggregate gross benefits. The expected signs for o (negative) and 3
(positive) are assigned.

® Thei ntercept for costs was shadow priced. The slope dso incorporates a shadow price factor to allow the WTP to be
expressed in terms of the original survey responses, without shadow pricing. Because WTP per household is on a monthly basis,
population in every year has to be multiplied by afactor of 12 in addition to the shadow price factor.

18 From the propertiesof the expectation and variance operaors E(x + BX) = o + BE(X). This says that the expected
value of a constant (c), plus another constant () times a randomvariable (letting X represent WTP) isthe constant o plus the
constant 3 times the expected value of therandom variable. For example, see Paaffenberge and Patterson 1987, p. 208 and Little
1978, Chapter 10 on strictly linear relationships between random variables versus error propagation formulas.

17 Probabilistic cost-benefit analysis not reported herein strongly suggests that theinvestment is judified if a reasonable

mean benefit jug slightly higher than the Turnbull lowe bound (Vaughan et al., 2000a) so this paper doesnot employ the
Turnbull mean and itsvariance in choosingthe optimal sanyple size.
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sample mean 1.88 standard errors above the break even value. The Kristrdm and Paasche means are even
more distant from the break even value (R$3.31 and R$6.80 respectively in absolute terms and 3.28 and 4.96
standard errorsrespectively). Under these meansthe cumulative probability of alossis clearly lower than
it would be using the 75-25 weighted average to measure WTP and predict NPV.

A Normal Approximation tothe Distribution of the Benefitsof Additiona Sampling

Thisleads to the second key to Schlaifer’s approach. It isthat, given asuccessful project on average, each
possible NPV loss has a probability associated with it. Centering the net benefits distribution on the most

Figure 2. Losses and L oss Praobabilitiesfor WTP Below Break-Even
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likely value of WTP, the observed sanple mean, the loss probabilities are defined by the tail portion of a
normal density function lying below u,. The sum of the productsof all the possible expected losses and their
associated probabilities reveals the cost of uncertainty. Figure 2 illustrates the superimposition of the linear
relation representing the opportunity loss function (also called the conditional*® value of perfect information
or CVPI function) on the norma E(WTP) distribution whose standard error is assumed known from the first
small sample.

18 Opportunity losses ae conditional because after the first sample has been taken and the optimel act is chosen (inthe
case illustrated, invest because E(NPV)>0) they are conditional on that act. See Paffenberger and Patterson, p. 1069. For afull
discussion that may be more accessible than Schlaife’ s original book, see Winkler 1972.
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The distribution of gains and losses in Figure 2 is centered on the sample mean WTP of R$7.47, with an
initial spread given by the mean standard error of the small sampe, 0.84. Increasing the sample size
decreases the amount of spread in the (assumed) normal density, thus decreasing the expected value of aloss,
as demonstrated by the probability density function generated by alarger sample and a smaller standard error
(the lightly shaded line in Figure 2). Unlike the the small sample' sdensity, it has an infinitesimal amount of
its area to the left of the break-even point of R$5.89.

Lossesin NPV are shown as positive in the figure. The horizontal axisintercept of the CVPI functionisthe
break-even value u,, given discounted costs equal to — . It can be found by setting E(NPV) to zero and
solving the linear function - & + 3 p, = 0 for b, = o / . The slope, 3, measures the decrease bdow zero
in NPV for any WTP below the break-even value. So, for WTP < u,, the CVPI function’ sdependent variable
equalsP ¢ [k, - E(WTP)] and for WTP> ., the CVPI function is zero.

All else equal, higher discounted costs (a larger negative c) shift the CV PI function to the right, raise the
requisite break-even value and, given the sample mean WTP, put more mass of the tail of the normal
probability density under the non-zero part of the CVPI loss line. The expected opportunity loss or cost of
uncertainty is the sum of the products of the normd density function to the left of the break-even value and
the conditiona vaue of perfect information to the left of the break-even value. Therefore, higher costs raise
the cost of uncertainty, given the sample mean estimate of willingness to pay.

Developing the Objective Function

To calculate the required loss integrals, Schlaifer (1959, 1961) normalizes the extent of departure of the
break even point from the sample mean WTP and computesa “ unit lossintegral” from the standard normd
distribution (Table IV in Schlaifer 1961). Multiplying the value of the unit loss integral by [3 representing
the marginal contribution of the sample measurement (WTP) to the outcome (NPV) yields the expected loss
of an (optimal) terminal action, ELTA. As previously mentioned in Table 4, the ELTA is aso called the cost
of uncertainty or the expected value of perfect information, EVPI, if the decision to invest is made
immediately after taking the first small sample without gathering any additional information. That is:

ELTA =EVPI = » 0,(p) * L (ID])
where:
B Marginal contribution of WTP to NPV, in $.

0,() Standard error of the mean WTP posterior to taking afirst small sample. The posterior can either be
the standard error of the mean of that sample in the absence of a subjective prior (or under avery
diffuse prior) or the posterior combination of a prior guess and the sample standard error. (See the
next section for details). Specifically (Schlaifer, 1961, p.305; Paffenberger and Patterson, 1987, Ch.
23) theinformation contained in the prior distribution, |,, is the reciprocal of the prior variance of
the population mean, or 1/ 6,%(|%), denoting the prior with a“0” subscript. The information in the
first small sample, Iy isthe reciprocal of the variance of the sample mean, or 1/0%(X). The posterior
variance of the mean, /1, isthe sum 1/ (l, + Iy) and the posterior standard error is the square root
of that sum, or:

0,(W) = VI, = [1U(l, + Ig)]** = [1 (Vog(K) + Vo*(R)) ]*2
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=[(0,°(1) * 0°(X) / (0,°(1) + 0*(X))]*?

ID| The absolute value of the standardized difference between the break-even value of WTP, p,,, and the
mean posterior to taking afirst small sample, E,().*° That is, in Schlaifer’ s notation:

IDI = Iu, - Ei()] /04().

E,() The mean posterior to taking afirst small sample. It caneither be the mean, X, of that samplein the
absence of a subjecti ve prior or the posterior combination of a prior guess about the mean, E(j) and
the sample mean. Using |, and Iy from directly above as weights:

Ey(p) = [lo ¢ Eo(p) + Ig * X1+ [l + Ix 1.

Ly Unit lossintegal, or the expected value o the difference between the normalized random varieble
of interest, x, and D.?°

By taking a second sample and not acting immediately on the basis of the first small sample, it may be
possible to reduce expected losses. The expected value of the new sampleinformation, EVSl, isafunction
of the monetary value of thereduction in variance due to the second sample, or the reduction in the ELTA.
To find the optimal size of a second sample, AN*, the function to be maximized includes the benefit of
variance reduction and the sampling costs. The benefits are measured as the expected value of information
obtained from a second sample of size AN >0, assuming the population variance of WTP is known or set
equal to the variance obtained from the first sample. Analogous to EV P, the expected value of the sample
information, EVSl, isthe value of the reduction in losses due to the reduction in variance brought about by
taking more observations, AN:

EVSI =P ¢ o(E,) * Ly(IDe )

where;

o(El) Is the preposterior reduction in the standard error of the mean attributableto taking a second sample
of size AN. It is calculated asthe square root of an information-weighted average of the posterior

variance of the mean from above, 6,%(j), and the variance of the mean the new sampleis presumed
to produce, 0%/AN. To get 0/AN, assume the population standard deviation (of individual

!9 For a profitable investment D < 0.

20 While Schiaiferis not too clear, Bonini et al. (1997) define L, as:
_D 00
Lu= J(D-0fdx = [(xD)f(x)dx

-00 D
where f(X) is the standardized nomal density function. The expresson on the left appliesto profitable invegments, the
expression on the right to unprofi table ones. The expressions are symmetric; for any — D whose absolute value equals D they both
produce the same value of L. In words, the expression on the left isthe integral of the standard normal variate from negati ve
infini ty up to - D, which is the standardized offset between the sanple mean and the break-even value. Beyond - D, the
probability of an opportunity lossis zero, so, although the zero probability is ostensibly omitted from the calculation, L, is not
the mean loss of the truncated di stributi on, but measures the untruncat ed mean loss of the enti re distribution (Jedamus and Frame
1969, p.97).
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observations, not the mean) o, is approximatdy equal to the standard deviation from the first sample
The value of 6 can then be obtained as the product of the size of thefirst sample, N=250, and the
variance of the mean WTP (see Table 3 above), or 6% = N 6?(X). Then, the Bayesian preposterior
reduction in the standard error of the mean (Schlaifer 1961, p. 324; Paffenberger and Patterson 1987,
p. 1108; Winkler 1972, p.364; Lapin 1994, p. 464) is just the square root of:

0*E) = o) | — 2]
0,%()) + 0%/AN

IDe|  The absolutevalue of the standardized difference between the break-even value of WTP, p,, and the
mean posterior to taking a first small sample, E,(j), now using o(E,) as the preposterior estimate
of the standard error of the mean WTP at new sample size AN. That is, in Schlaifer’s notation:

IDel = I, - Ey(i)| / 6(E).

The costs of sampling are assumed to be alinear function of AN, with fixed costs K, and unit variable costs
k.. Then, the full loss-cost function to be minimized with respect to AN is:

£=Min: (EVPI -EVSI) + (K, + k. AN)
AN

Once N, is chosen, EVPI and K are constants.”* Therefore minimization o £ is equivalent to maximizng
a concentrated net benefit function £'where EV S| represents the benefits of taking an additional sample of
size AN and incurring total variable costs of k; AN. The expected net gain from (additional) sampling,
ENGS, becomes:

£ = ng: ENGS=EVSlI - Kk AN=B 0 (E)*Ly(IDc]) - k. AN
N

EVSl isafunction of AN because ¢ (E,) and L, (| D¢ |) are nonlinear functions of AN. The optimum sample
size that maximizes£' with respect to AN hasto be found numerically. In some cases, the EV Sl function will
be less than the variable costs of sampling for all values of AN, so no additional sampling effort is warranted.
In other cases, the net gain from additional sampling will be positive for AN between a new sample size of
one and the number of cases whereEV S| = k, AN, and should be relatively easy to locae. Finally, the net
gain from additiona sampling may initially be negative and decrease with AN (because EV S| < k, AN over
thisrange), and only later exceed variable costsin a narrow region of valuesfor AN.? Finding the optimum
in this case may depend on maeking a good choice of the starting value for the numerical search.
Approximations to aid the search are discussed in Annex 2.

2 Throughout we aswime the fixed costs of taking asecond sample, K, are zero, becausemost of these aosts (for
consulting services, focus groups, quedionnaire pretesting and design) would be inaurred to obtain the initial sample of 250
cases.

22 gee Schlaifer (1961, pp. 330-331) for adiscusson of the behavior of the ENGS function; the explanation is
compli cated and defies intui tively obvious summary.
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SIMPLIFYING THE BAYESIAN DECISION ANALYSISBY ASSUMING
TOTAL IGNORANCE

The Bayesian approach is not difficult to implement. Althoughit looks complicated, the stepsinvolved are
relatively simple?® The appearance of complexity is misleading, arising mainly from the need for an
elaborate system of notation in order to keep track of the several prior and posterior means and variances
involved in the several solution steps.

However, things can be made simpler yet by dropping the requirement that priors be formed. Tight priors
are desirable because they reduce the required size of the optimal sample, all else equal. But while many CV
studies have been done in developing countries they almost defy easy summarization (Ardila et. al. 1998)
so forming reasonable prior beliefs on the basis of fragmented and inconsistert past experience is difficult
indeed. In fact, unless priors are reasonably accurate they will not contribute much information on WTP
location and spread beyond what an initial survey sample contains, so the influence of relatively diffuse
priors on the optimal decision will be trivial. In this common situation, little can be gained from formulating
wildly inaccurate prior estimates; all the information content will be in the first small sample, N,. The
simplified sequential approach suggested in this section mirrors those realities.

Modifying the Bayesian Linear Profit and Normal L oss Distribution M ethod

Recall the fundamental Bayesian relation between the information content of the posterior (denoted with a
1 subscript, or I,) and the information contained in the prior (denoted with a 0 subscript, or 1,) and the sample

(Ix):

Equivalently, the posterior information content equals the sum of the reciprocals o the prior and sample
variances of the mean:

1o =102+ 1 0%

Under total ignorance there is no information content in the prior because the prior variance is extremely
large, so the only useful information comes from thesampleitself. Then |, = Ig; 0, = 0-*and b, =X. This
means that the expression for the expected value of perfect information, EVPI, from above can be rewritten
as afunction of the standard error of the mean from the first small sample:

ELTA =EVPI = * 6(X) * L\(ID]) =P * 6/VN, * L (|D])

% For aflowchart that is clear and easy to follow see Lapin (1994), Figure 26-15, p. 1046.
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where now:

D] The absolute value of the standardized difference between the break-even value of WTP, u,, and the
mean from the first small sanple, standardizing with the standard error of the sample mean:

IDI = I, - X/ 0(X)

Under this simplification the prior mean and standard error entering into the preposterior step where the
optimal AN is sought are just X and o(X). The value of the reduction in opportunity loss brought about by
the contribution of any samplesize increase of AN to variance reduction now becomes a simpler expression.
It dependson standard deviation (s = o) from the first sample, without any adjustment for a subjective prior.

EVSI =« 0* * Ly(ID¢)
where:

o* the preposterior degree of reduction in the standard error of the mean contributed by a second sample
of size AN under total ignorance. Here, o* is the amount of revision in the standard error of the
mean from the prior to the posterior distribution.

IDel  The absolutevalue of the standardized difference between the break-even value of WTP, p,, and the
mean fromthe first smadl sample standardizing with o* representing the amount of revision in the
standard error of the mean between the first small sample of size N, and the ultimate preposterior
sample of size N, + AN.

As before, the trick isto place the posterior variance of the mean fromthe previous step in the role of prior
in this step, so o(X)? from the first sample now plays the role of the prior. From the Bayesian rule |, = |, +
Iy above, the preposterior variance of the mean after the second sanple is taken is the sum of the prior
variance from the first sample and the variance of the mean from the second sample. With the population
standard deviation 0 = s= 6(X) * VN, assumed known, the information cortent of the posterior is greater
than the prior because of the expansion in sample si ze from N, to N, + AN:

Vo,? = 1o,? + 1057 = U(0%N,) + U(O/AN) = (N, + AN) / 02

Asintuition would suggest, the posterior variance is the variance of the pooled sample N, = N, + AN. Taking
reciprocal s of the preceding:

0,2=0%/[N, + AN]

Then, (Paffenberger and Patterson, 1987 p. 1108; Lapin 1994, pp. 1032-1038; Winkler 1972, pp. 363-364)
the shrinkage in the standard error of the mean due to sample size augmentation, o* is defined as:

ot =Voz2-02 = V[0UN] - [02/ (N, + AN)]

Under total ignorance, o* issimply afunction of the population variance, the initial sample size, and the
addition to it. The rest of the optimization proceeds just like the pure Bayesian case.
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Verification: Hueristics of a Monte Carlo Approach

Schlaifer (1961, p. 341) comments that even in “violently non-Normal problems’ a number of numerical
analyses showed that the approximation performs well, but he al'so cautions that “In problems where a good
dedl isat stake it will be well to use the Normal optimum only as a starting point and then use exact methods
to trace out expected total lossin the neighborhood of this point.”

Let us back up to the beginning and suppose the researcher admits to near tatal ignorance about mean WTP
and its variance before an initial sample is actually taken?* Once the first sample of size N, is in hand,
measures of mean WTP and its variance can be calculated. Using Monte Carlo CB analysis the initial NPV
distribution and EVPI can be easily obtained, as can the EV S for sample size increases above the initial
base.

The reduction in the standard error of the mean (6*) for a range of values of AN near the optimum
previously found under the Normal approximation method can be calculated as a function of the population
variance, o, N, and AN. Repeated Monte Carlo CB simulations can then be run using the shrinkage in the
standard error of mean WTP associated with each of severd ascending values of AN asinitial conditions.
Without having to invoke the normality assumption, empirical estimates of EV Sl and ENGS can be extracted
from each simulati on and the optimum AN* found by trial and error.

This tedious, time consuming and computationally intensive Monte Carlo process is hardly operational.
Monte Carlo CB analysis with the case study data was undertaken to verify the accuracy of Schlaifer’s
approximate solution. The results confirmed that in practical work Monte Carlo analysis can be safely
bypassed by using Schlaifer’ slinear loss function and normal NPV distribution approximationsinstead, and
maximizing EV Sl with respect to AN. The next section demonstrates the reaults of applying these steps to
the Tietéinvestment project data using Schlaifer’ sapproxi mate solution that assumes linear profits, normeal
distributions, and a known (or knowable via the first sample) popul ation variance.

4 Before consulting the Bayesian decision analysis literature and Schlaifer’ s optimization method we originally took
an intuitive Monte Carlo loss-cost minimization approach that was similar, but not identical, to the Monte Calo routine
discussed here. Weare grateful to areviewer of an early verdon of this paper who asked for atheoretical justification and
generalization of that intuitive brute force method. His comments directed us to the Bayedan decision analysis literature and the
approximate solution for optimal sanple size assuming linear profits and normal distributions.
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A WORKED EXAMPLE OF FINDING THE OPTIMUM SAMPLE SIZE

In review, using actual datainvolvesforming a prior “ guesstimate” about the mean WTP and the population
variance, drawing aninitia “small” sample, combi ning the sample estimates of mean and variance with the
prior estimatesto arrive at posterior estimates, and using those estimates to monetize the potential reduction
in expected opportunity loss that might be gained by gathering more data and hence decide whether alarger
sample would be optimal. By invoking the assumption of total ignorance the sequential optimization
approach only requires mean and variance information from a small original sample. If additional sampling
would be optimal, the extra observations can be collected in a subsequent round o interviewing.

The case study demonstration follows the structure of the spreadsheet algorithm for finding the optimal
samplesize provided in Annex 3, which documentsall of the calculation steps.?® The subsequent discussion
is based on the weighted 75-25 mean and its standard error, but similar calculations using any of the other
means (e.g the Turnbull, Kristrém or Paasche means) can easily be done by following the same structure.

TheWTP Distribution

Referring to the spreadsheet algorithm for sample size optimization provided in Annex 3, the first two steps
have already been touched on. The concise summary below uses Schlaifer’ s (1959, 1961) notation to make
it easier for the reader to consult the original sources and the Annex.

Priorsfor the Parameters of the WTP Distribution

When example priors were constructed for the classical method above, the trianguar distribution was
invoked for ease of use. Now, assume instead that the population mean of WTP, u, is arandom variable
having prior probabilities that can be obtained from a normal density function.?® Since normality is the
operative assumption, suppose the prior mean E,(p ) = ﬁis 1% of income, or R$ 8.28. A prior measure of
the standard deviation of p is needed to summarizethe a-priorn variability in possible values of .

To guesstimate the variability inmean WTP, |, in advanceof taking any measurements at all, Schlaifer’s
technique (1961, p. 301) asks the deci sonmaker to speculate about what i nterval around the prior mean
would give the guess an even (50-50) chance of being carrect. Somewhat arbitrarily choosing an error of
R$4.00 on either side of the prior says the true meanis aslikely as not to fall between R$4.28 and R$12.28.

% The spreadsheet was successfully benchmarked usingthe example datain Schlaifer 1961. Itwas also independently
replicated by a colleague to verify the cell formulas. The interested reader can safely duplicate the structure and insert his/her
project data to conpute an optimal sanple size using the Bayesian approach. To get results unde total ignorance, aseparate
spreadsheet is not needed; simply insert a very large number in Row # 10 for the prior standard error of the mean. This will wash
out the influence of the prior in all subsequent calculations.

26 |11 the treatment of the standard method, we had to form guesses about the mean WTP and the standard deviation of
individual observationsin the population. Here, we are speculating about the mean of all possible prior means and the spread in
that (normal) prior digribution of hypothetical means. Thisexplains the use of the notation o,(j) rather than o,
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From the standard normal distribution, the standardized value of [W-E,( 1t )] / 04(R) that demarcates 25% of
the distribution’ sareais 0.67 so, solving 0.67 = 4.00/0,( |+ ), the prior for the population standard deviation
of u is4.00/0.67 = R$5.97. This represents awesk or diffuse prior because the guess about the mean WTP
has arelatively broad band of uncertainty and therefore E,( 1 ) has very little information content.

Initial Sample Estimates of the Parameters of the WTP Distribution

The expected value of the weighted sample mean is the populationmean, u. That is, E(X) = u = R$7.47.
Recall from Table 3 that the variance and standard deviation of the distribution of sample means at N, =250
cases are 0%(X) = $/n = R$0.70; and 6(X) = s/n*? = R$0.84. Fnally, the samplestandard deviation can be
obtained from the sample estimate of the standard error (or deviation) of the mean (Schlaifer 1961, p. 265)
and used asif it were the true population standard deviation. Thuso = sand s=o(X) * N, ¥* = R$ 13.23.

By definition, the mean is asymptotically normally distributed. Therefore, discounted net benefits would be
normally distributed if WTP benefits are the only source of gross benefit, if NPV islinearly related to mean
WTP, and if costs are either deterministic or normally distributed as well.

Profits from Investment and Sampling Costs
Linear Profit Function

The relation between NPV and WTP can be easily extracted from a deterministic CB spreadsheet model
through a simple sensitivity analysisby fitting alinear Ordinary Least Squares model to the NPV data points
that result from varying WTP. Or, simpler yet, the shortcuts covered previously to finding the intercept and
slope of the CVPI function can be used. In the case of our sample datathefit is perfectly linear. At baseline
cost conditions E(NPV) = R$159,730,009 =-594,653,983 + 100,988485 (WTP). The break-even value of
E(WTP) is R$5.89 per household per month. The intercept represents discounted project costs and some
market benefits for energy production that were not estimated via CV.*’

Linear Sampling Cost Function

The sampling cost function is linear, with a marginal (equals variable) cog per observaion of R$89 in
shadow-priced terms, as required by IDB protocols (Powers 1981). Zero fixed costs for the second round of
sampling are assumed.

Results

Under baseline initial conditions, including project costs and the diffuse prior, it is optimal to augment the
initial sample size beyond 250 cases. The logit probability formulafrom Annex 2 indicates that additional
sampling should be done, and brute force exploration revealsthat additional sampling can produce positive
values for EVS net of variable sampling cost. Numerical optimization using Excel’s Solver routine returns

%" The energy benefit offset to discounted capital and operating costs is R$38,892,992, while at baselineconditions
total discounted costs ae R$633,546,963. For changes in cost conditions relative to the baseline, theintercept - « in the linear
profit function varies according to thelinear relationship — o = 38,892,992 - 633,546,963 (Cost Level/Base Cost Level), while
the dope remains unchanged. For instance, if costsincrease by ten percent, the intercept changes from -594,653,984 at the
baseline to -626,331,332. This relationship can beused to explore the efect of decreasing the standardized d stance of E(NPV)
from zero on the optimal sample sze.
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asolution of 2243 cases for AN*. The optimal sample size needed en totois 2,493 cases, which is almost
1,000 cases larger than the largest sample size recommended by the standard method. The explanation for
this result, while not intuitively obvious, can be uncovered by looking at the empirical net benefits
distribution shown in Figure 328

Figure 3 Empirical NPV Distribution The empiricd Monte Carlo NPV

distribution in the figure is

MPY Distribtionfor Stages | & NIl & ssuring Operating Cost is Awdidable approximatdy normal because the
p— Frequency Chart influence of the normally distributed
WTP benefit estimates dominates other
non-normal sources of variability in the
model. The baseline expected value of
NPV is R$190 million and the standard
deviation of the empiricdly generated
distribution of mean NPV is R$114
million. Because the grand mean of the
distribution of means is 1.67 standard
errors above zero® the (empirical)
probability of project successis 95% so
there is a 5% chance of incurring an
opportunity loss. Whilethisis afairly robust investment, recall from Figure | that the standardized distance
between E(NPV) and zero has to be above about 2.4 for AN to be zero. Therefore, stopping with theinitia
small sample would have been recommended only if the sample mean WTP were R$7.92 or greater rather
than the R$7.49 that was actually observed (e.g no additional sampling would be recommended if the
optimization were based on Kristrénm' s mean of R$9.20).

-“ZEAS =B ZERR Lo ==13 =iad
WPy OO RF

Another relevant issue is how the optimal sample size would behave if the gap between the mean of the
E(NPV) distribution and zero were narrowed rather than widened. The optimal sample sizeis sensitive to
the extent of the displacement of the decision variable, the expected value of NPV, from zero, which is
equivalent to the standardized offset of E(WTP) from the break even value u,. Looking back at the EVSI
formula, as |D| increases with a widening gap between the expectation of WTP and the break-even WTP,
the more certain the decision maker becomesthat the optimal decision under the prior information is correct
without additional sampling. As |D| increases the expected value of opportunity loss, L, falls, lowering the
EVSI of any particular AN (see Lapin 1994; Winkler 1972).

For contrast withimproving on the baseline case, looking at the opposite extreme is instructive. Raising
discounted costs by 25% (ie. shifting the inter cept of the linear net profit function from - R$595 million to

2 The figure was produced by 50,000 Monte Carlo trials of arisk-based CB analysis using Crystal Ball. No formd test
of normality (e.g. the Komolgrov-Smirnof statistic) was undertaken, but the median, R$187 million, is very close to the mean,
and the measuresof skewness(0.12) and kurtosis (2.98) are consistent with approximate normality.

29 From the linear profit function VAR[E(NPV)] = B? « VAR[E(WTP)] or (100,988,485) 0.70 and SE[E(NPV)] is
approximately [VAR(E(NPV))]¥2= R$84 million. This is lower than the enpirical result of R$114 million because itonly
reflects variation in WTP benefits Under the linear approximation the distance of NPV from zeo in SE unitsis
$160,955,974/R$84,493,829, or 1.9. Equivalently, the sample mean of WTP, R$7.47, isthe same numbe of standard errors
away fromthe break-even value of R$5.89 because(R$7.47 - R$5.89)/0.835 also equals 1.9 with the discrepancy due to
rounding. The Monte Carlo mean NPV and its standad error differ from the deterministic linear prediction because they ae
affected asymmetrically by randomness in cost and timing variables that the deterministic linear function ignores.
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-R$753 million; see footnate 27 above) brings the expected value of NPV very close to zero and puts hal f
of the di stribution of expected net returnsinto the negative region. Here, the opti mal size of AN will be at
amaximum. Table 5 shows the elementsof a crude trial and error search for an optimum, assuming a diffuse
prior for WTP, and Figure 4 shows the optinmum graphically.

Figure 4. The Expected Net Gain from Additional Sampling

Optimal AN for E(NPV) Near Zero
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Table 5. Crude Step Search for N* with E(NPV) Near Zero
Trial Value for AN: 5750 6750 = Optimum 7750
Change in SE of Mean o* 0.809321811 0.811879233 0.81379242
Standardized Distance De 0.0410 0.0409 0.0408
Unit Normal Loss Integral Ly(Dg) 0.378772051 0.378834534  0.378881025
Value of Sample EVSI (AN)  $30,957,867 $31,060,815  $31,137,831
Information
Total Sample Cost Ks+ Kk .AN $511,750 $600,750 $689,750
Net Gain ENGS(AN)  $30,446,117 $30,460,065 $30,448,081
Marginal Gain A EVSI (AN)/AN $120 $88 $67
Marginal Cost K, $89 $89 $89
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The table and figure show that the response surface is very flat. The approximate optimum is 6750 cases but
the gainsto additional sampling diminish quickly after about 2000 cases. By inspection of the figure, the net
gains from an additional sample of 4000 cases (R$30,303,436) or evenless are fairly close to the net gains
at the optimum (R$30,460,065). This is consistent with Schlaifer's (1961, Figure 21.5) numerical
investi gations which showed that moderate departures from the optimum number of cases (+ 20% or even
+ 30%) are likely to be inconsequential.

To find the effect on the optimal N of thelocation of the E(NPV) distribution relative to E(NPV) equal to
zero, the baseline E(NPV) distribution has to be shifted leftward. To shift the NPV distribution, several
exercises were conducted, raising the mean of total project operating and investment costs above the baseline
by 5% through 25%, while holding the mean WTP constant at R$7.49.*° The increase of 25% is the extreme
discussed above that brings E(NPV) as close as possible in the risk analysis to the break-even point of zero
while remaining barely positive. Table 6 shows the effect that the standardized distance of E(NPV) away
from zero has on the optimal incremental sample size AN* under diffuse priors, tight priors and total
ignorance.

Table 6. Optimal Incremental Sample Sizes, AN*, Depending on Priorsand Initial EVPI

Costs Relative to Baseline (o ; + o) 1.0 1.05 1.10 1.15 1.20 1.25

Small Sample Standard Errors o(X) of
E(NPV) from Zero? 1.90 1.52 1.15 0.77 0.40 0.02

High Sampling Cost of R$89 Per Interview

Tight Prior® 0 0 0 1996 4393 6530
Diffuse Prior 2243 3411 4600 5657 6409 6715°
Total Ignorance 2351 3507 4673 5697 6413 6687

Low Sampling Cost of R$30 Per Interview

Tight Prior P 0 0 0 3994 7458 10729
Diffuse Prior ® 3866 5656 7506 9160 10340 10821
Total Ignorance 4022 5799 7615 9219 10343 10774
Notes:

a. Because the prior mean exceeds the sample mean, the posterior standardized distance exceeds the
distance using the ssmple mean done..

b. Prior guess of E(WTP) of R$8.28 with a prior £50% error of R$0.50 for the tight prior and R$4.00 for
the diffuse prior.

c. Exact optimum corresponding to the approximate optimumin Table 5 and Figure 4.

30 Increasing project costs can be thought of as a proxy for decreasing E(WTP) or reducing the standardized distance
between E(NPV) and zero at the initial sample size of N, = 250 cases.
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Figure 1 and the resultsin Table 6 suggest that, in this case, small samples suffice when sampling costs are
high and the mean of the NPV distribution is over about 2.4 standard errors away from the break-even point
of E(NPV)=0 because the decision has little downside risk. There is no payoff in taking larger samples to
shrink that risk by reducing the variance and further compressing the portion of the NPV distribution lying
below zero. However substantial gainsto increasing the sample size begin to emerge after the expected value
of NPV falls below about 2.4 standard errors from zero. Although the algorithm does not explicitly
incorporate Type Il error, the fact that the required sample size increases as the gap between E(NPV) and
the break-even point narrows provides protection against fal se acceptance of a mean WTP that justifies the
project when in fact the true mean WTP would lead to the opposite conclusion.

Table 6 convincingly showsthat good prior estimates of the mean WTP and its spread can significantly
reduce the amount of sampling effort needed to reach an optimum CV survey sample size for investment
decisions. Unfortunately, given the state of the art, good prior estimates remain unattainable, especidly in
developing countries.
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CONCLUDING OBSERVATIONS

Small CV survey samples are probably adequate for CB analysis when the fixed and variable costs of
sampling are relatively high and the investment is extremely robust. If the investment has a probability of
failure of lessthan one percent, it is not necessary to take large samples. In this sense the common perception
is correct. If investment proposals are carefully screened and only the very best of them become candidates
for final project analysis, massive CV sampling effortsto measure WTP more precisely are not worthwhile
However, investments with infinitesimal risks are rare.

At the other more common extreme, when the investment is borderline because nearly half of the NPV
distribution fallsin the negative quadrant even though its mean NPV is barely positive, small 250 observation
samples will always be inadequate. In this situation, which can be easily identified a-priori, a search for the
optimum number of additional cases needed to augment the small sample is recommended. Variationsin the
size of the second sample of 20% or 30% around the optimum number of extra observations needed are not
likely to have much effect on expected total 1oss (Sahlaifer 1961, p. 337). So even if a second sampleis
necessary, money can be saved by only taking 70% to 80% of the recommended optimal number of
additional surveys.

Like our worked example, many prospective investments fall somewherein the middle ground between can't
miss and borderline proposals. The existence of this grey area makes it risky to rely exclusively on any
particular rule of thumb, be it for small, medium or large samples. But, in general, given an initial expectation
for WTP and a service flow outcome so thetime pattern and magnitude of gross benefitsis held constant,
the more costly the project the larger the samplethat will be needed to justify it. This paper has tried to show
how to make that generd rule operatioral.

The literature on benefitstransfer and metaanalysis has been skeptical about the value of using accumulated
past experience to estimate the benefits of new projects (Brouwer and Spaninks 1999). The real value of this
kind of information has largely been ignored because researchers have focused mainly on the degree of
correspondence between pred ctions of WTP generated from past studies and the actual mean WTP results
from field work, working under the as if presumption that prior information would be used to replace new
sampling.

This focus might be misplaced. Prior information need not be regarded purely as a substitutefor new in situ
CV survey sampling. The two are complementary because caombining good prior predictions of WTP with
actual survey samples can save a good deal of new sampling effort and money. The synthes s of past CV
results to make accumulated contingent valuation WTP information transportableto new situations might
pay off, but only if the status quo were to involve the systematic use of an optimal Bayesian sample size
protocol under the handicap o total ignorance or diffuse priors.

To date, internaional lendinginstitutions have not systematically followed reliable protocols for selecting

CV survey samplesizesin their appraisal of prospective investments, and they are not alone. In this operating
environment, new informaion has little value beyondits immediate contribution to the specific decision at
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hand, which is to economically justify a given project. The WTP datais used once and then forgotten. But
this information could become more valuableif sample sizes were chosen in the future that take account of
the expected opportunity loss the actual investor might incur. Then, there would be a good reason to take
alonger range view about the value of information.
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ANNEX 1

Data and Formulae for Nonparametric Estimates of M ean WTP and Its Variance

Table A1.1 The Small Sample Data

Bid Total "No"
R$ Answers Total Cases

Bid Groupj [bj] [N] [Total ]

j=0 0 na none

j=12 2 35 98

j=2 5 34 54

j=3 12 39 51

=M =4 20 37 a7
j=M +1=5 >20 na none
Column Totals: 145 250

Note:

a. Thefirst two bid groups (R$ 0.50 and R$2.00) were
pooled a R$2.00 to preserve monot onici ty.

Three Nonparametric Measures of the Mean and the Variance of the Mean

There are three nonparametric estimatorsof the mean: (1) alower bound measurethat understates mean WTP
(the Turnbull mean, see Haab and McConnell, 1997); (2) an intermediate measure (Kristrom’s mean, see
Kristrom 1990 and Boman et al. 1999) and (3) an upper bound measure that overstates mean WTP (the
Paasche mean, see Boman et al. 1999). The logic behind all three nonparametric estimatorsis the same. The
proportion of “No” answers at each bid level b, provides a discrete stepwise approximation to the cumulative
distribution function. The mean E(b) of a continuous random variable x with a cumulative distribution
function F(b)** and probabil ity density function f(b) —which isthe first derivative of F(b) w.r.t. b —isgiven
by:

(1) E(b) = [ bf(b) db
The problem is to use a discrete approximation to compute:
(2) E(b) = E(WTP) = JZ b f(b)

wherethe range of b is from zero to some upper limit b, that forces F(b) close to 1.0 because the bid is
so high that ailmost al respondents would be unwilling to pay that amount for the environmental
improvement.

Haab and McConnell’s lower bound Turnbull mean sets each b to the lower bound of the bid interval (i.e.
the first interval runs from zero to the lowest bid offered so b, at j equals zero is set to O, etc). The
intermediate and upper bound means are obtained by simply redefining the point of evaluation, b, in each

31 To obtain the mean from the survival function, 1-F(x), the same reasoning devel oped below also applies.
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interval to some fraction x timesthe lower bound plus (1-x) times the upper bound of the interval, where O
< K < 1. Kristréom’ s intermediate mean sets K to %2 (the mid point of the interval) while the upper bound
mean sets x to 0. While Boman et al. (1999) try to put all three measures on a consistent symbolic footi ng,
there are errors in their notation for the means and, unfortunaely, their variance formulas are incorrect.*
Below, all three measures are recast in Haab and McConnell’ s notation, whichis conceptually correct.

Table Al1.2. Formulae for Nonparametric Means and Their Variances

M easur M ean? Variance of Mean
e

M+1 M+1 M
Lower Y bp Y (b.)’IV(F) + V(Fi.l - 2 ), (b bV (F)
Bound j=1 j=1 j=1

M+1 M+1 M

Inter- ) [Kb+(1-K) bl p Y, [Kby+(1-K)bBIV(F) + V(F.)] - 2 ), [K by +(1-K)b]*[K b, +(1-K) by, V(F)
mediate j=1 j=1 j=1

M+1 M+1 M
Upper L bp Y ()AV(F) + V(F)l - 2 Y, (b b, )V(F)
Bound J =1 ] =1 ] =1
Notes:

a  The probability densty in bid group j, p , equals the difference between the estimates of cumulativedensity in the current
and preceding bid groups, F, - F;, where, letting N; represent the number of “No” responses and Y, the “ Yes” responsesin
groupj, F; =N,/ (N;+Y)). Therearej = 1...M distinct bids specified in the survey. The bid j = M+1 is theultimate bid
level that the ressarcher must assume. It presumably drives F, to 1.0.

b. Thevariance of each proportion F isequd to [F « (1- F)] = (N; +Y)).

c. The parameter k is assumed by the researcher to form a weighted average of the lower and upper bound bids in any
interval. Kristrom’'s mean usesk = 0.5, but any value of k between zero and one is admissable. If k = 0 the Turnbull lower
bound mean results, and k = 1 returns the Paasche upper bound mean of Boman et al. 1999.

Our preferred measure of the meanthat is used in the main text setsk to 0.75, which is more conservative
(lower) than Kristrém'’ sintermediate mean. Table 3 below provides the mechanics of our intermediate mean
and variancecalculation. Calculation of the rest of the means and variances proceedsanalogously.

32 The Bowmanet al. (1999) variance formulas incorrectly treat the bid, not the cdl proportions, as a randomvariable
and are inconsistent with the respective expected value formulas because they were not derived from them using the fundamental
rules pertaining to thevariance of a um of random vaiables. Instead, an inappropriate textbook formula wasforced to stand in.
We discovered thisdiscrepancy by comparing the vaiances of the lower bound means produced using the Haab and McConnell
formula and the Bowman formula. The variance from the latter was roughly double the for mer. We then ran 20000 trials of a
Monte Carlo simulation in Crystal Ball letting each cell proportion at each trial involve a draw from abinomial digribution with
parameters defined as the number of observationsin each bid cell and the probability of refusal. The empirical results
independently confimed the correctness of the Haab and McConnell varianceformula. Our formulas for the variances of the
intermediate and uppe bound means werederived by extending the Haab and McConndl formula to these situations and wee
also successfully validated by Monte Carlo simulation.
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Table A1.3. Calculation of I ntermediate Nonparametric M ean and Variance of Mean Assumingk = 0.75.

Weighted Product of
Bid Squareof  Product of Adjacent
Bid bwt, Total Cumulative Probability Bid Groupj Weighted Adjacent Group Variance Variance
Groupj_Bid k=075 Answers Cases Didribution Density Variance Bid Weighted Bids Variances Term #1 Tem#2 E(WTP)
e
[K b'—l + = = - 2 . ) - . b\thz. bwt e bwt bwt,
[b] ( 1_](1)bj] [N,+Y,] [F=N,/Totd] p=F-F, V(F) bwt; bwt « bwt,,  V(F) - V(F.) V() - V()] ( .\,/(F_)M) )
Il
]=0 0 na none 0.000000 na 0.000000 . e ... e e
=1 2 0.50 35 98 0.357143 0.357143 0.002343 0.2500 1.3750 0.002343 0.000586  -0.006443 0.18
j=2 5 275 34 54 0.629630 0.272487 0.004318 7.5625 18.5625  0.006661 0.050375  -0.160322 0.75
j=3 12 6.75 39 51 0.764706 0.135076 0.003528 45.5625 94.5000  0.007847 0.357506  -0.666802 0.91
=4 20 14.00 37 47 0.787234 0.022528 0.003564  196.0000 350.0000  0.007092 1.389995  -2.494630 0.32
j=M+1=5 40 25.00 na 0 1.000000 0.212766 0.000000  625.0000 0.0000  0.003564 2.227348 0.000000 5.32
Column Totals: 145 250 1.000000 4.025811  -3.328198 7.47
M ean: 7.47

Variance of the Mean (Ter m#1 + Term #2): 0.697613
Standard Error of the Mean (Square Root of Variance): 0.835233
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ANNEX 2

Approximationsto Indicate Whether More Sampling is Needed and the Size of AN

Schlaifer (1961) relates the need for more sampling to thevalues of his essential parameters of the problem
of sample size, labeled Z, and the previously defined D,,, and provides a nomogram (Figure 21.4, p. 332) that
indicates whether it is worth taking a second sample, depending on the values of these parameters. The
essential parameter Z, is a function of the marginal contribution to NPV of a changein WTP (i.e. 3), the
marginal costs of sampling (i.e. k) the population standard deviation of WTP (i.e. o, approximated by the
standard deviation, s, from the first sample) and the standard error of the mean WTP posterior to taking afirst
small sample (i.e. 0,(l) ):

Z,=[o,(p) / 0] « [Bo / k]*

Since many readers may not have easy access to Schlaifer’ sbook and the decision nomogram, wefit alogit
probability model with a second-order index function to 197 pairs of D, and Z, points read from his Figure
21.4, coding the dependent variable as 1 if the nomogram recommended “ Sample before Acting”, and as 0
if it recommended “ Act without Sampling”. The model fit was reasonably good (pseudo R* of 0.80) with 182
correct predictions and 15 false predictions. As a aubstitute for the Schlaifer’ sfigure, a decision to take an
additional sample should be made if the predicted probability from the model is equal to or greater than 0.5:

Probability e = 1/ {1 + exp [2.2061 - 1.1255 Z, - 4.6102 D, + 0. 0066 (Z,)° + 4.8539 (D,)’]} > 0.5?

If the answer from eval uating the probability model (or Schlaifer’s Figure 21.4) is“ Sample before Acting”
it will be necessary to search for the optimum, AN*. A good starting value for the grid search over AN can
be found from arough approximetion to the optimum, AN, ., using another simplification from (Schlaifer
1961, pp. 334-335):

AN* = ANApprox = [(Bo./ks)lls]ll2 ° [:I/‘2 ZO/ PN (DO)]
where P, (D,) is the probability density of the standard normal density function evaluated at D,. The
optimum size AN* of the addition to the origina small sample (N, = 250) either be found through trial and

error by constructing crude fixed-step size grid search in the neighborhood of the initial guess, AN, .0
by calling an optimization routine like Excel’s Solver after specifying AN,,,., asthe starting value.
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ANNEX 3
Spreadsheet For mula Layout for the Optimum Sample Size Calculation:
Tieté Case at Baseline Under Diffuse Prior Information (1998 Brazilian Reals)

$8.28 Guess the mean W TP.
$4.00 Guess the variation in the mean
covering a +50% interval.
$12.28 Find the upper limit of the interval.
$4.28 Find the lower limitof the interval
0.6745 Find the Standard Normal z statistic
value for each tail outside the interval
(i.e.each contains 25%)
$5.9304 Find the standad deviation of
population mean W TP implied by the
prior, based on the error imits, e.
$35.1697 Find the variance of mean WTP

250

$7.47

$174.40

$13.21

$0.70

$0.84

$7.49

$0.83

implied by the prior.

Input value. Number of cases in
initial small sample.

Input value.
Calculate(Nonparametric) Mean
WTP

Calculate variance of WTP from
sample estimate of standard
deviation of WT P imm ediate ly below.

Calculate sample estimate of
standard deviation of WTP using
standard error and square root of
sample size, 250.

Input value. Calculate varance of
samp le Mean WT P.

Inputvalue. Calculate standard error
of sample Mean WTP as square root
of variance of mean WTP.

Compute posterior mean as a
weighted average of prior and
sample means based on quantity of
information provided by each. See
Rows 27 through 29 below.

Com pute posterior standard error of
mean as a weighted average of prior

Row # COLUMN A: COLUMN B: COLUMN C:
Labels Labels Formulas
1-3| I. Form Priors
4| Prior Mean and Standard Deviation of WTP
5|Prior Mean E (1) =0 0.01*828
6 Prior emor @50% e 4
7|Prior eror uL@50% b+e C5+C6
g|Prior emor LL @50% boe c5-C6
Prior UpperAlt. U @+25% [W-E, (W0, NORMINV(0.75,0,1)
9
Prior Standard Deviation of Population OO(D) (C7-C5)IC9
10{ Mean
1 Prior Variance of Population Mean Ooz(p) Cc1072
12-13) Il. Get Posterior Distribution from Normal Prior and Sampling Distributions, Sampling Variance Known
14-15 Sample Data
16 Initial (or First) Sample Size N, 250
Expected Value of Sample Mean E(X)=pM 7.47
17
Sample Variance s? C1972
18
Sample Standard Deviation S C1670.5*C21
19
20 Variance of Sample Mean 02® =g’/ N, 0.449
Standard Error of Sample Mean o(X)=s/N, 12 0.670
21
22| Posterior Calculation
Posterior Mean El(rj) (C5*YC11+C17*1/C20) /
(1/C11+1/C20)
23
Posterior Standard Error of Mean Gl(rj) (1/1/c11+1/C20)".5
24

38

and sample standard emors based
on quantity of information provided
by each. See Rows 27 through 29
below.



Row #

25

26

COLUMN A:
Labels

Posterior Variance of Mean

Quantity of Information

27|

28

29

30

31-32

33

34

35

36

37

38

39

40-41

42

43-45)

46

47

48

49

50

In Sample Mean
In Prior Mean
In Posterior Mean

Check

COLUMN B:

COLUMN C:

Labels
0 ([)

L=l + kg

Formulas

C24172

1/C20
i/cu
1/C 2472

C27 + C28

RESULT

COMMENT

$0.68

1.43

0.03

1.46

1.46

lll. Expected Profit After First Small Sample (i.e. Based on Posterior from Il Above)

Linear Profit Function Intercept

Linear Profit Function Slope

Expected Profit (NPV)

Break Even Value of WTP

Standardized Loss

Unit Normal Loss Integral

Expe cted Lo ss of O ptimal Terminal
Action

o
B
a+PBeE(H)
a+-B

IDI = Py - Ex(W)I/ Ox(1).

Ln(D)

ELTA = EVPI =
Beoi(H) e Ly(IDD

-594653984

100,988,487

C33+C34*C23

C33/-C34

ABS(C36-C23)/C24

NORMD IST(C37,0,1,0) -C37*
(1-NORMD IST(C3 7,0,1,1))

C34*C24*C38

IV. Optimal New Sample Size (Depends on Data in Rows 46 to 64)

Optimal N ew Sam ple Size

AN

Insert Approximate Trial Size to
Initialize Oprimization from C83
(2683) and then Optimize

V. Expected Value of Information from a New Sample vs. Cost of Sampling

Current P rior Set Form er Poste rior=New Prior

Current Prior for Mean=Posterior From
1

Current Prior for Standard Error of
Mean

Current P rior for Variance of Mean

Variance of (Population) Mean at New

Ey( 1)

0.( 1)

o’ (1)

0% (x) = 0%/ AN?

Cc23

C24

C25

C1972/C42

39

-$594,653984

$100,988,487

$161,738,697

$5.89

1.94

0.010051

$839,505

2243

$7.49

$0.83

$0.68

$0.08

Compute as square of posterior
standard ermor.

Relative Information content.
Relative Information content.

Pooled information content

Input data for intercept of linear
relationbetween NPV and WTP, i.e.
NPV=a+B*WTP. Calculate outside
from data generated by deter minis tic
cost-ben efit analysis m odel.

Input data forslope of inear relation
between NPV and W TP. Calculate
outside from data generated by
determ inistic cost-b enefit analysis
mode |.

Expe cted NPV at posterior baseline
mean WT P of $5.83.

Value of WTP that sets expected
NPV to zero, given posterior mean
WTP.

Standardized distance between
break-even WTP and posterior
baseline mean.

Unit Normal Loss Integral Factor
(Schlaifer, 1961, Table IV, p. 370)

Expected toss of making an optimal
“go” or “no-go” investment decision
at this point withoutany additonal
sampling (i.e. based only on the
initial priors and the original small
samp le N=250 cases).

Size of a hypothetical second
sample to augment the initial
sample of N=250. To find an
optimum, iterate over alternative
values of AN to find the sample
size that maximizes the Expected
Net Gain from a second sam ple
(ENGS(AN) in Row 64 below.

Repeat of previously computed
posterior value for new set of
calculations. It now becomes a prior
value in this step.

Repe at. Former p osterior in lll now a
prior.

Repe at. Fomer posterior in Il now a
prior.

Key step. Standard error of the mean



Row #

51

52

53

54

55

56

57|

58

59

60

61

62

63

64

COLUMN A:
Labels

Sample Size, Given Population Sigma
Assumed Known and = s

New Posteriors

Preposterior Reductionin Variance of
Mean from AN

Preposterior Reductionin Std Error of
Mean from AN

|D| Absolute Value of Prior
Standardized Loss from above

|Del Absolute Value of Change in
Standardized Loss due to AN

Unit Normal Loss Integral

Expected Value of Sample Information

Unconditional Expected Terminal Loss

Sampling Costs

Fixed Cost
Marginal=Variable Cost

Total Sample Cost

COLUMN B:

COLUMN C:

Labels

o%(E)

0(€1)or0*

IDI= Wy - E4( )|/ 04( {)

IDel = Wy - Ex(MI /0 (E,)

Ln(Dg)

EVS | (AN)

UETeL(N)

Expected Net Gainfrom a Second Sample

Expected Net Gainfrom a Second
Sample of Size AN

ENGS(AN)

Formulas

C49* (C 49 / (C49 +C50))

C5270.5
C37

ABS(C36-C47)/C53

NOR MDIST (C55,0,1,0) -
C55*(1-

NOR MDIST (C55,0,1,1))
C34*C53*C56

C39-C57

89

C60+C61*C42

C57-C62

40

RESULT

COMMENT

$0.61

$0.78

1.94

2.04

0.00755

$597,647

$241,859

$89

$199,680

$397,967

of the new sample of arbitrary size
AN=50. Used below to get revised
posteriors in Rows 52 and 53.

Calculate updated change in
variance due to a second sample of
size AN using posterior from first
sample as a prior and the new
sample estimate fom Row 50.

Square root of change in variance in
Row 52

Repeat from above. Uses posterior 1
as new priorwith 0 subscript

Uses New Posterior Standard Error
of Mean to calculate standarized
difference between break-even WTP
and mean posterior to first sample of
N=250.

Unit Normal Loss Integral Factorfor
D¢ (Schlaifer, 1961, Table IV, p. 370)

Expected value of information in new
optimal sample of AN* = 2243

Terminal Loss aftera new sample of
AN=2243 is taken. Equal to ELTA
before an additional sample (ie. at
AN=0) minus the EVS I(AN)

Set to zero to simplify. Include actual
value here.

Input data. Example estim ate is in
1998 Brazilian Re als( R$)

Multiply marginal sam ple cost by AN
and add to fixed cost.

EVSI((AN) minus the total cost of
taking an additional sam ple of size
(AN). This is the Objective to
optimize over alternative values of
(AN). Use a grid search (see text)
or, more efficiently, SOLVER in
EXCEL, setting the TARGET CELL
as C64, equal to MAX; by changing
the (AN) cell, C42, subject to the
constraint that C42 is > a small
positive number (e.g. 0001)



Row #

65-67

68

69

70

71

72

73]

74

75

76

77

78

79

80

81

82

83

RESULT

COMMENT

1.94

$0.83

$13.21

0.06

$100,988,487

$89

245.19

15.36

The First
From Above

Essential parameter.

From Above

From Above

From Above

From Above

The Second Essential Parameter

COLUMN A: COLUMNB:  COLUMN C:
Labels Labels Formulas
VI. Addendum: Decide if Additional Sample is Necessary and Compute Approximate AN for Optimization
Starting Value (See Annex )
D Value Standardized Loss D C54
Intermediate Components for Calculating Z,_
Eirst Component
G,( 1) From Small Sample N, c48
O guess from sample data=s Cc19
o, (1) /0 c71/C72
Second Component
K, C34
K c61
(keo / ko' ((+C75*C72)/C76)0.33
Z Value Z, C77+C73
n* ((1/C78%0.5)*

((kyo / k)™

Prob ability an A ddition al Sam ple
Should be Taken

Logit Probability Model
Approximation

Take an Additional Sample Before Acting?

Quick Approximate Optim al AN (lgnore if Answer to “Sample B efore
Acting?”is ‘NO”

(NOR MDIST (C68,0,1,0)))"0.5

C7772

+1/(1+exp(2.206+C78*-
1.1255+C68*-
4.6102+C78"2*0006596+C68~
2*4.8539)

IF(C81>0.5, YES”,“NO")

C79*C80

41

0.0446

60,116

0.99

Probably Yes

2683

Crude approxim ation of the optimal
ratio of:
n/((k,o / kg)*®)? from Schlaifer

Denominator in ratio of N = AN / ((k,
o/ ky)'®)? See Row 83.

Logit function fit to data from
Schlaifer's Sample Decision Figure
21.4

Result from evaluating Logit
model

Appro ximate solution for AN. Use
in C42 above to initialize grid
search or SOLVER optimization.



