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Abstract* 
 
This paper uses year-to-year variation in temperature to estimate the long-term 
effects of climate change on health outcomes in Mexico. Combining temperature 
data at the district level and three rounds of nationally representative household 
surveys, an individual’s health as an adult is matched with the history of heat 
waves from birth to adulthood. A flexible econometric model is used to identify 
critical health periods with respect to temperature. It is shown that exposure to 
higher temperatures early in life has negative consequences on adult height. Most 
importantly, the effects are concentrated at the times where children experience 
growth spurts: infancy and adolescence. The robustness of these findings is 
confirmed when using health outcomes derived from accidents, which are 
uncorrelated with early exposure to high temperatures. 
 
JEL classifications: I12, Q54, Q41 
Keywords: Global warming, Climate change, Health, Mexico 

 

                                                 
* This paper was prepared as part of the Inter-American Development Bank Research Department project “The 
Health Impacts of Climate Change in Latin America and the Caribbean.” 
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1. Introduction 
 

The frequency of heat waves is increasing rapidly in Latin America and the Caribbean. In 

Mexico City, for example, the number of heat spells (i.e., days with temperatures over 30ºC or 

86ºF) between 1991 and 2000 is almost twice the number recorded in 1970s and three times 

more than in the 1950s (Jáuregui, 2009). Compared to the 1870s, heat waves are now nine times 

more common. Furthermore, as shown in Figure 1 below, one important aspect of climate 

change in Mexico is the expected shift to the right in the distribution of temperatures. By 2070, 

heat waves are expected to become even more frequent than today. 

What is the expected impact of this aspect of climate change on human health? This is a 

relatively new area of research in economics. Most studies have concentrated on the effects of 

climate change, measured by extreme temperatures including heat waves, in high-income 

countries, ignoring developing countries altogether, including those in Latin America and the 

Caribbean.1 Furthermore, the few studies that focus on heat waves in richer nations tend to 

estimate the contemporaneous effects on mortality rates. While mortality is an important 

outcome, the vast majority of the population survives heat waves. Thus, a natural question to ask 

is whether heat waves have a long-lasting effect. Does exposure to a heat wave as a child affect 

the person’s adult health? If so, is the effect more pronounced when exposure occurs at a 

younger age? 

This paper answers these questions in the context of Mexico. I use random year-to-year 

variation in temperature to estimate the long-term effects of exposure to high temperatures on 

health outcomes in Mexico. A key advantage is the use of temperature data at the district level 

(municipalidad in Mexico) combined with three nationally representative cross-sectional 

household surveys. These data allow me to match an individual’s health as an adult with her 

history of exposure to heat waves in each stage of her life cycle until adulthood. The combined 

cross-sectional surveys provide a sample of over 65,000 individuals born between 1960 and 

1990, a period where the frequency of heat waves was increasing rapidly. 

This paper contributes to the existing literature in several ways. First, I use temperature 

data within states, which permits a more precise estimation of the effect of climate change. Most 

papers in the United States use data at the state level, limiting the inference derived from these 

papers. Second, I estimate long-term effects by examining whether exposure to extreme 
                                                 
1 Some exceptions include Patz et al. (2005), Campbell-Lendrum and Corvalán (2007) and Huang et al. (2013). 
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temperatures early in life affects adult health. Using height as health outcome, I show that 

exposure to high temperatures has a negative impact on adult health. Third, the econometric 

model permits the comparison of exposure early in life vis-à-vis later periods. The results 

suggest that infancy (between 1 and 4 years of age) and adolescence (between 10 and 15) are the 

most critical periods. These periods coincide with the growth spurts of humans. 

Furthermore, I conduct two falsification tests. When weight is used as a measure of adult 

health, my results show no effect from extreme temperatures. This is expected because, unlike 

height, weight is a measure of short-term health (see Strauss and Thomas, 1995, for a detailed 

review). Thus, the possible negative effects of heat waves on weight could be remediated by 

future investments. However, lacking the necessary health status to grow at critical periods 

cannot be reversed by future investments. I use the likelihood of experiencing an accident in the 

last 12 months prior to the surveys as a placebo test. The validity of the identification strategy is 

reinforced, as I find no effect of heat waves on this outcome.  

The paper explores heterogeneous effects by gender and poverty level of the district. The 

results indicated no gender differences in the impact of heat waves. However, the effects are 

more negative for individuals growing up in poorer districts. The results of this investigation 

provide academics and policymakers with the most comprehensive analysis to date of the long-

term effects of climate change on health outcomes in the region. 

 
2. Brief Review of the Literature 

 
The literature on the effects of climate change on health outcomes is small but growing. As 

reviewed by Deschênes (2012), the bulk of papers has focused on developed countries (however, 

see Burgess et al., 2011, regarding India); have mainly studied the effect of the temperature; and 

evaluate the contemporaneous impact. To keep this section brief and to focus the attention of this 

document on the contributions of my work I will discuss papers closely related to mine. For a 

more extensive review please see Deschênes (2012) and the papers therein. 

The work by Deschênes and Greenstone (2011) is the closest to my paper. They explore 

the effect of extreme temperatures, both hot and cold, on the age-specific mortality rates in the 

U.S. during the past few decades. Their identification strategy exploits the random nature of 

temperature changes across states to estimate the effect on mortality during that same year, after 

accounting for state and year fixed effects as well as state trends. They find, for example, that an 
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extra day with a mean temperature exceeding 90°F (the measure for heat waves in the United 

States), relative to a day in the 50°–60°F range, is associated with an increase in the annual age-

adjusted mortality rate of about 0.11 percent. However, the effects are not linear because “a day 

with a mean temperature below 20° F is associated with an increase in annual mortality of 

roughly 0.07–0.08 percent” (p. 153). The authors find that effects are the largest for infants and 

the elderly. A similar strategy is used in Deschênes, Greenstone and Guryan (2009), where 

extreme temperatures are linked to lower birth weights, also in the United States, and by 

Deschênes and Moretti (2009) for the case of migration. Guerrero Compeán (2013) applies this 

methodology to estimate the contemporaneous effect on mortality in Mexico and finds 

ambiguous results. 

In all of these papers, the data force the authors to aggregate their measure of temperature 

at the state level.2 This is mainly due to the lack of mortality data at the county level. Thus, we 

could expect the precision of their findings to be somewhat comprised due to data limitations. 

That is not the case in my paper. Like the previous papers, I use data at the station level. 

However, unlike those papers, the outcome of interest is available at the individual level and I 

can identify the district where the person resides.3 Thus, I can measure extreme temperatures (of 

heat only for Mexico) at a finer and more relevant level: the district.  

Second, as shown above, extreme temperatures are associated with higher mortality rates 

but the effects are very small (or ambiguous.) Thus, the vast majority of people survive a heat 

wave, including children. However, are the effects limited to mortality? The main contribution of 

my paper is to show the long-lasting effects of heat waves. Given my findings, concentrating 

only on mortality will underestimate the effect of heat waves on health. Thus, I take advantage of 

the richness of my data and ask whether a person’s adult health could be linked to exposure to 

heat waves while growing up. The exploration of the long-term effects addresses the limitation 

that Deschênes (2012) has identified in the existing literature. Most importantly, using a model 

borrowed from the literature on skill formation, I test which are the most vulnerable stages of a 

person’s life cycle until adulthood in regards to health. This model is described below. 

 

                                                 
2 Similar to my paper, Guerrero Compeán (2013) uses data at the district level. 
3 Below I discuss why between-state mobility is not a limiting factor for my analysis of Mexico. 
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3. Conceptual Framework 
 

To identify the long-term effect of exposure to extreme temperatures across different stages of 

the life cycle on health outcomes I adapt the model of “skill formation” introduced by Cunha et 

al. (2006).4 A key issue in this model is the departure from the previous literature where 

“childhood” was treated as a single period (e.g., Becker and Tomes, 1986) Instead, Cunha et al. 

(2006) consider a model where inputs at different stages of child development could have a 

differential impact and these inputs could be seen either as complements or substitutes. To adapt 

this model in terms of estimating the effect of climate change, consider the health status of a 

person at time t as ht. In its simplest form, ht is a scalar, but the model can be easily extended to 

the case where ht is a vector. The goal of the model is to describe how health evolves over time 

and what is the (possibly) differential role of exposure to disinvestments such as extreme weather 

in early (e.g., childhood) vis-à-vis later periods (e.g., adolescence).5 

Assume that the technology of production of health when a person is t years old is given 

by  
 

ht+1=ft(x, ht,Wt)  t=1,2,…,T (1) 
 

where ht+1 and ht are the stocks of health at time t+1 and t, respectively, for a child who was born 

with health endowment h0, while parents’ characteristics are captured in x (and are assumed to be 

time invariant). Children are exposed to weather shocks Wt in each period. Thus, a recursive 

representation of equation (1) leads to  
 

ht +1=mt(x, h0,W1,…,Wt)  t=1,2,…,T (2) 
 
Equation (2) implies that future health status depends on the initial health endowment h1, 

parental characteristics and the full history of weather shocks since t=1. It is straightforward to 

see how this equation helps us study how weather shocks affect adult health status. First, we set 

T=21 years of age, as most humans in the Western world, for example, reach their adult height at 

that age (see Deaton, 2007; Case and Paxson, 2009; and Agüero and Deolalikar, 2013, for 

references). Second, because data on birth weight are not available for adults in the household 

                                                 
4 Almond and Currie (2011) use this model, for example, to consider the case of the formation of human capital 
before age five. 
5 The full model could consider overlapping generations (parents and their children) each living for T periods with 
common preferences and inelastic labor supply and discusses the optimal timing of investments. Adding these 
features to this simplified version does not affect the main conclusions of this model. 
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survey described below, I assume that initial health status, h0, is a function of the person’s 

gender, birth cohort and location. Third, the parental characteristics (e.g., mainly education and 

access to durable goods) are approximated using Census data matched by the birth cohort. 

Finally, the sequence of weather shocks W1,W2,…,WT is captured by the temperature recorded in 

each period. 

This model will allow me to evaluate how adult health (at T+1) depends on weather 

shock at time t, that is, Wt for t≤T. Formally, this is given by  
 

= θt for t=1,2,…,T.  (3) 

 
Furthermore, the model permits the comparison of exposure to hotter days in different 

stages of the life cycle. For example, we can compare the effect on early childhood (θearly) vis-à-

vis adolescence (θadolescence). This will identify the sensitive periods regarding adult health. The 

next section discusses the data to be used in the estimations. 

 
4. Data Sources 

 
There are three main data sources for this paper. The data on health status come from three 

rounds of the Encuesta Nacional de Salud y Nutrición (ENSANUT), Mexico’s nationally 

representative health and nutrition survey. The three cross-sectional surveys were conducted in 

2000, 2006 and 2012, and they cover all health aspects of a randomly selected sample of 

households. Relevant to this paper is the inclusion of questions such as height and weight. In 

order to conduct placebo tests, I include an outcome that is unlikely to be related to heat waves: 

accidents. Having access to these three outcomes is an important advantage of the ENSANUT. 

The average sample size of adults between the ages of 21 and 50 is close to 65,000 for all three 

surveys.6  

In addition to this rich set of health outcomes, the ENSANUT includes information about 

the person’s age and location. I use this information to construct the sequence of heat waves. The 

second main data source comes from Mexico’s National Weather Service, which collects daily 

information from all the meteorological stations across the nation. Figure 2 shows the location of 

each of the more than five thousand weather stations across Mexico. For each station and day, 

                                                 
6 See http://ensanut.insp.mx/ for more details about the three surveys. 



7 
 

the maximum and minimum temperatures are collected together with information about 

precipitation levels. I match the household data with the weather information using the 

coordinates of each station and the location of the district where the individual lives from the 

ENSANUT. It is important to note that between-state migration is unlikely to be a source of bias 

for this paper. The Mexican census of the last 20 years shows that over 90 percent of individuals 

live in the same district (and state) as in the previous iteration, reducing the downward bias that 

migration could introduce into the estimates.7 

 The third main source of data comes from Mexico’s National Population Council 

(CONAPO). We use CONAPO’s district-level poverty index to explore heterogeneous effects.8  

The poverty index is a function of measures of education (percent of population that are illiterate 

or without primary education), housing (percent of houses without water, sewage, electricity, 

non-dirt floors), and access to goods (having a refrigerator) in a given locality. These three main 

datasets will be used to estimate the effects of changes in temperature as described in equations 

(2) and (3) above. 

 
5. Methods 
 
Equation (4) below describes the main regression model: 
 

hijscy= +λzijscy+αj+αc+αy+αsc+eijscy  (4) 

 
where hijscy refers to adult health status (i.e., height) of person i, from district j, located in state s, 

born in cohort c and observed in survey year y. Equation (4) includes fixed effects at the district 

(αj), birth cohort (αc) and survey year (αy) as well as state trends (αsc). These controls account 

for the possible unobserved factors that remain constant over time and those which, nationwide, 

vary year of birth of the cohort, by survey year and by state over time. Vector zijscy includes 

controls to approximate the initial health endowment (h0, in the model described in Section 3) as 

well as parental characteristics (x). These variables include gender, marital status, and education 

of the individual. 

                                                 
7 Migrants out of Mexico are not included in the household survey. While this does not affect the internal validity of 
the paper it could reduce its external validity. Exploring this issue goes beyond the scope of this paper and should be 
addressed in future work. 
8 The index can be downloaded for free from 
http://www.conapo.gob.mx/es/CONAPO/Indices_de_Marginacion_2010_por_entidad_federativa_y_municipio. 
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 Function g(t) captures the association between adult health and temperatures at different 

stages of the life cycle. Note that g(t) varies by birth cohort and district, but to focus on the 

functional form I suppress these indexes in the discussion below. I follow Deschênes and 

Greenstone (2011) and consider a flexible form that divides the temperature at stage t in 10ºF 

bins. In this case g(t) is characterized by 
 

g(t)=ΣbθbtTEMPtb   for t=1,…,T  (5) 
 

The variables TEMPtb denote the number of days in stage t where the daily mean 

temperature is in the b-th of the 10 bins between 50ºF to 90ºF. A key functional form assumption 

is that the impact of the daily mean temperature on adult health status is constant within 10° F 

intervals. 

Consistent with the current literatue, the validity of this paper’s empirical strategy is 

based on the assumption that the estimation of equation (4) will produce unbiased estimates of 

the θbt vector for all t. Vector θ is identified from district- and cohort-specific deviations in 

weather (i.e., the fixed-effects discussed above) after controlling for shocks common to all 

districts in a state. Furthermore, due to the random year-to-year variation in weather, it seems 

reasonable to believe that this variation is orthogonal to unobserved determinants of health 

status. Therefore, for the case of the b-th temperature variable, the identifying assumption that 

E[gjc(t) eijscy | gjc(t), λzijscyc, αj, αc, αy, αsc] = 0 is very likely to be valid. In this regard, the 

identification assumptions made in this work are analogous to the papers by Deschênes and 

Greenstone (2011) and Deschênes, Greenstone and Guryan (2009).  

As shown in Figure 3, there is enough within-year variation to estimate the effects. For 

example, I plot the residuals from regressing the percentage of days in a year where the 

temperature is above 80˚F in each weather station against station fixed effects. The figure shows 

that for each year, the percentage of hot days is between 20 and 83 percent and that half of the 

data exhibits a variation larger than 10 percentage points.  

Also, it is likely that the error terms are correlated within district or within district-by-

cohort groups over time. To address this issue, I ran all regressions with standard errors that 

allow for heteroskedasticity of an unspecified form and that are clustered at the district level and 

a second specification clustering at the district-by-cohort group level. I found no difference 

between these approaches, so in this paper I present the former; however, the results using the 
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latter method of clustering are available upon request. The estimates of equations (4) and (5) are 

shown in the next section. 

 
6. Does Exposure to Hotter Temperatures Have Long-Lasting Effects? 
 
6.1 Main Results 
 
Table 1 shows trends in hot temperatures in Mexico. There, I regress the percentage of hot days 

against a linear trend and station fixed-effects. In Panel A, I limit the sample to years from 1960 

to 2011. In column (1), an additional year is associated with an increase in the proportion of days 

above 80˚F of 0.0012. This means that in 20 years, the proportion of those hot days increases by 

3.95 percent (=0.0012*20/.608). The corresponding number for days above 85˚F is higher. In 20 

years Mexico has experienced a 4.44 percent increase of these hot days (column 2). For days 

above 90˚F, the number is even bigger: 7.52 percent over two decades (column 3). Note that this 

increase is observed after controlling for the time-invariant characteristics of the districts. 

Furthermore, as shown in Panel B, in the years since 1980, the corresponding increments are 

larger. In 20 years, the percentage of days with temperatures 90˚F or more has increased by 9.6 

percent. What is the effect of these higher temperatures on those exposed while growing up? 

 To answer this question I estimate equation (4) and the results are shown in Appendix 

Table A.1. To simplify the number of parameters in vector θ, I aggregated the stages of the life 

cycle into four groups: in utero (exposure in the year before birth), infancy (aged between 1 and 

4), childhood (5-9) and adolescence (10-15.) Also, the temperature variables capture the 

proportion of days above T˚F, where T={50, 60, 70, 80, 85 and 90}. To ease their interpretation, 

I calculate the effect on adult outcomes of having more hot days relative to 50˚F, after 

controlling for fixed effects at the district, birth cohort and survey year as well as state trends and 

individual characteristics (i.e., education, marital status and gender.) For example, let θ50 and θ80 

be, respectively, the parameters capturing the effect on height of having days in the 50s˚F and 

days in the 80s˚F when the person was an infant and reported in Table A.1 (column 1). Thus, I 

plot the effect relative to the impact of temperature at 50˚F, that is θ80-θ50 (solid lines), as well as 

its 95 percent confidence interval (dashed lines). These estimates are shown in Figures 4-6 

below. 

 In Figure 4, I use height as the adult health outcome. The figure shows its association 

with temperature for the four stages of the life cycle described above. The results indicate that 
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exposure to hotter temperatures relative to mild ones (50˚F) is negatively associated with height 

as an adult. This negative association is also found in the other growth-spurt period: adolescence. 

Not surprisingly, I found no effect for the periods where human growth is slower. 

 I repeat this analysis but now focusing on weight as measure of health. Unlike height, 

weight measures short-term health and it should be less affected by temperature while growing 

up. This is precisely what it is shown in Figure 5. Exposure to colder or hotter temperatures 

rather than 50˚F is not associated with the weight, and this is true for all stages of the life cycle. 

In Appendix Figure A.1 I considered an alternative measure of health: self-reported overall good 

health. This variable is equal to one if the individual feels that she is “satisfied” or “very 

satisfied” with her overall health status. However, a main concern with this variable, beyond the 

fact that it is self-reported and lacks the accuracy of anthropometric variables such as height and 

weight, is that a person could internalize a chronic health condition and be less likely to report it 

as a problem. In this case, a true negative impact of heat waves would not be observed. This is 

precisely what is observed in Figure A.1, where exposure to higher temperatures does not change 

the individual’s perception of her health. 

 
6.2 Robustness Checks and Heterogeneous Effects 
 
The findings suggest that exposure to hotter temperatures (relative to 50˚F) has a negative 

association if it happens at stages of the life cycle where human growth is faster. That is, 

individuals exposed to these weather shocks have not been able to (completely) buffer these 

negative effects. The lack of an effect for short-term outcomes such as health serves as a placebo 

test. In Figure 6, I take this test even further and focus on an outcome that is not linked to 

temperature: the likelihood of suffering an accident in the last 12 months prior to the household 

survey. As shown in that figure, there is no link between the likelihood of accidents and exposure 

to different temperatures while growing, and this reinforces the validity of the identification 

strategy. 

 I consider now whether the effects of higher temperatures have differential impacts by 

gender and by the poverty status of the district. In both cases I altered equation (4) to include an 

interaction term with all the temperature variables. The results for the case of gender are shown 

in Figure 7. There is no significant difference in the impact of weather on height by gender. 

However, as shown in Figure 8, we can observe that the effect is more negative for individuals 
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living in areas with higher levels of marginalization (poorer areas) when they experience higher 

temperatures during adolescence. These differential effects are not present for other stages of the 

life cycle. 

 
6.3 Mechanisms 
 
The findings presented above provide robust evidence of the long-term effect of heat waves. 

Exposure to heat waves not only affects health outcomes by the contemporaneous effect on 

mortality but has long-lasting consequences as shown on adult height. In this subsection I discuss 

some possible mechanisms leading to this long-lasting impact. First, exposure early in life to 

higher temperatures can affect adult health via the impacts on pollution. For example, Bharadwaj 

and Eberhard (2010), in the case of Chile, show that changes in temperature negatively affect 

birth outcomes through augmenting the level air pollution. 

Second, Epstein et al. (1980), Ramsey (1995), Hancock, Ross, and Szalma (2007), 

Pilcher, Nadler, and Busch (2002) show significant negative effects of high temperature on 

cognitive performance. This is important, as Case and Paxson (2009) demonstrate that cognitive 

performance and nutrition share the same inputs. A third possible mechanism could arise from 

changes in agricultural productivity and the availability of food. This is discussed, for example, 

by Guerrero Compeán (2013) and by macroeconomists explaining cross-country differences in 

income (Sachs and Warner, 1997). 

 
7. Conclusions 

 
This paper shows that the negative effect of high temperatures goes beyond contemporaneous 

effects on mortality. Using three large and nationally representative surveys in Mexico, 

combined with district-level temperature information, I show that exposure to high temperatures 

early in life has long-lasting consequences. In particular, higher temperatures during infancy (1-4 

years of age) and adolescence (10-14) have significant negative effects on adult height. 

 The methodology used in this paper is validated by the use of falsification tests where no 

effects are found on weight, a short-term of health, and the likelihood of having accident, an 

unrelated measure of health. While there are not significant differences by gender, the paper 

shows that the negative effects are stronger for individuals living in poorer districts. Thus, the 

effects of high temperature would lead to an overall decline in health that is going to amplify 
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health differences by socio-economic status. These differences are critical to the design of 

effective policies to buffer the negative effect on health produced by climate change. 
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Figure 1. Number of Days in Temperature Bins from Historic and Projected 
Data in Mexico 

 

 

Source: http://cesm.ucar.edu/models/ccsm3.0/ 

http://cesm.ucar.edu/models/ccsm3.0/
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Figure 2. Geographical Distribution of Weather Stations in Mexico 

 
Note: Each red dot represents a weather station in Mexico. Source: Author’s calculation based on 
GIS data from http://www.conabio.gob.mx/informacion/gis/ 
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Figure 3. Within-Year Variation in Extreme Temperatures 

 
Note: The numbers shown are the residuals of regressing the proportion of days in a 
year above 80˚F per weather station against station fixed-effects. The black solid line 
refers to the mean across all stations within a year. The blue dashed lines are the 25 and 
75 percentiles, the red broken lines are the 5 and 95 percentiles. The hollow circles 
capture the 1 and 99 percentiles. 
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Figure 4. Adult Height (cm.) and Average Daily Temperature 
at Each Stage of the Life Cycle 

 

Note: In each graph, the solid blue line represents the point estimate and the dashed line the 
95% confidence intervals. Each estimate shows the effect on adult health outcomes of 
having more days with temperature above 50˚F. The stages of the life cycle were 
aggregated into four groups: Pre, which represents in utero exposure (i.e., the year before 
birth), Inf (aged between 1 and 4), Child (5-9) and Teen (10-15.) All regressions control for 
fixed effects at the district, birth cohort and survey year as well as state trends and 
individual characteristics (i.e., education, marital status and gender.) 
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Figure 5. Adult Weight (Kg.) and Average Daily Temperature 
at Each Stage of the Life cycle 

 

Note: In each graph, the solid blue line represents the point estimate and the dashed line the 
95% confidence intervals. Each estimate shows the effect on adult health outcomes of 
having more days with temperature above 50˚F. The stages of the life cycle were 
aggregated into four groups: Pre, which represents in utero exposure (i.e., the year before 
birth), Inf (aged between 1 and 4), Child (5-9) and Teen (10-15.) All regressions control for 
fixed effects at the district, birth cohort and survey year as well as state trends and 
individual characteristics (i.e., education, marital status and gender.) 
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Figure 6. Likelihood of Recent Accidents and Average Daily Temperature 
at Each Stage of the Life Cycle 

 

Note: In each graph, the solid blue line represents the point estimate and the dashed line the 
95% confidence intervals. Each estimate shows the effect on adult health outcomes of 
having more days with temperature above 50˚F. The stages of the life cycle were 
aggregated into four groups: Pre, which represents in utero exposure (i.e., the year before 
birth), Inf (aged between 1 and 4), Child (5-9) and Teen (10-15.) All regressions control for 
fixed effects at the district, birth cohort and survey year as well as state trends and 
individual characteristics (i.e., education, marital status and gender.) 
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Figure 7. Heterogeneous Effects on Height by Gender (in cm.) 

 

Note: In each graph, the solid blue line represents the point estimate and the dashed line the 
95% confidence intervals. Each estimate shows the effect on adult health outcomes of 
having more days with temperature above 50˚F. The stages of the life cycle were 
aggregated into four groups: Pre, which represents in utero exposure (i.e., the year before 
birth), Inf (aged between 1 and 4), Child (5-9) and Teen (10-15.) All regressions control for 
fixed effects at the district, birth cohort and survey year as well as state trends and 
individual characteristics (i.e., education, marital status and gender.) 
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Figure 8. Heterogeneous Effects on Height by Level of Marginalization (in cm.) 

 

Note: In each graph, the solid blue line represents the point estimate and the dashed line the 
95% confidence intervals. Each estimate shows the effect on adult health outcomes of 
having more days with temperature above 50˚F. The stages of the life cycle were 
aggregated into four groups: Pre, which represents in utero exposure (i.e., the year before 
birth), Inf (aged between 1 and 4), Child (5-9) and Teen (10-15.) All regressions control for 
fixed effects at the district, birth cohort and survey year as well as state trends and 
individual characteristics (i.e., education, marital status and gender.) 
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Table 1. Trends for Hot Temperatures 
    

Dependent variable: Percentage of days above: 
 80˚F 85˚F 90˚F 
 (1) (2) (3) 
    

Panel A. Since 1960 
    

Mean of dep. var. 0.608 0.450 0.266 
    

Trend 0.0012*** 0.0010*** 0.0010*** 
 [0.0001] [0.0001] [0.0001] 

Observations 142,125 142,125 142,125 
Number of weather stations 5,259 5,259 5,259 

    
Panel B. Since 1980 

    
Mean of dep. var. 0.610 0.452 0.270 

    
Trend 0.0016*** 0.0012*** 0.0013*** 

 [0.0001] [0.0001] [0.0001] 
Observations 94,197 94,197 94,197 
Number of weather stations 4,824 4,824 4,824 

    
Note: * significant at 10%; ** significant at 5%; *** significant at 1%. Robust standard errors clustered at the 
district level. Controls include district fixed-effects. 
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Figure A1. Self-Reported Overall Health Status (=1) and Average Daily Temperature 
at Each Stage of the Life cycle 

 

 
 

Note: In each graph, the solid blue line represents the point estimate and the dashed line the 95% 
confidence intervals. Each estimate shows the effect on adult health outcomes of having more 
days with temperature above 50˚F. The stages of the life cycle were aggregated into four groups: 
Pre, which represents in utero exposure (i.e., the year before birth), Inf (aged between 1 and 4), 
Child (5-9) and Teen (10-15.) All regressions control for fixed effects at the district, birth cohort 
and survey year as well as state trends and individual characteristics (i.e., education, marital status 
and gender.) 
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Table A1. Main Regressions 

 
  Adult health outcome: 
  Height (cm) Weight (kg) Accident (yes=1) Good health (=1) 
  (1) (2) (3) (4) 
      

In utero exposure 50˚F -3.2208 -13.7264 -0.0387 -0.4285 
  (4.7897) (6.1352) (0.1010) (0.2222) 
 60˚F -0.5334 4.1877 -0.0197 0.2149 
  (1.9878) (3.6795) (0.0389) (0.1096) 
 70˚F 0.5503 0.3068 0.0203 -0.0991 
  (0.7551) (1.4550) (0.0236) (0.0535) 
 80˚F 0.0718 -2.176 -0.0216 0.0078 
  (0.6598) (1.6334) (0.0251) (0.0570) 
 85˚F -0.0700 1.7479 0.0273 0.0704 
  (0.7562) (1.7872) (0.0257) (0.0547) 
 90˚F -0.2012 -1.6486 -0.0174 -0.0657 
  (0.5801) (1.1346) (0.0148) (0.0380) 

Infant (1-4 yrs.) 50˚F 20.1018 9.0504 -0.4511 -0.5236 
  (8.4273) (16.9150) (0.2299) (0.5923) 
 60˚F -7.4093 -7.2069 0.1307 -0.1585 
  (2.8699) (5.8920) (0.0720) (0.2059) 
 70˚F 1.4214 1.6144 -0.0662 0.0853 
  (1.2670) (2.4275) (0.0404) (0.0917) 
 80˚F 1.9027 4.7436 0.0728 -0.0385 
  (1.2251) (2.1731) (0.0403) (0.0900) 
 85˚F -2.2869 -4.3085 -0.0264 0.0275 
  (1.3846) (2.4886) (0.0377) (0.0998) 
 90˚F 1.0903 0.9312 -0.0032 0.0465 
  (0.8504) (1.7507) (0.0232) (0.0665) 

Child (5-9 yrs.) 50˚F -6.6191 13.7291 -0.091 -0.358 
  (8.1893) (15.6738) (0.3236) (0.4178) 
 60˚F 2.5033 2.9572 -0.1007 0.1318 
  (2.9494) (5.7275) (0.0801) (0.1873) 
 70˚F -0.4325 -3.0029 0.0048 -0.1057 
  (1.2705) (2.5228) (0.0383) (0.0899) 
 80˚F -1.735 -1.3251 -0.0104 0.0235 
  (1.0693) (2.4374) (0.0407) (0.0936) 
 85˚F 0.8832 1.708 -0.0095 -0.0432 
  (1.3233) (3.0201) (0.0419) (0.1061) 
 90˚F -0.4365 -2.3539 0.0264 0.0613 
  (0.8125) (1.8932) (0.0254) (0.0625) 



26 
 

Table A1., continued 
 

  Adult health outcome: 
  Height (cm) Weight (kg) Accident (yes=1) Good health (=1) 
  (1) (2) (3) (4) 

 
Adolescent (10-15 yrs.) 50˚F 18.6008 9.792 -0.0192 -0.4047 

  (6.2349) (13.7611) (0.2190) (0.4891) 
 60˚F -8.6361 -1.7968 0.0538 0.2097 
  (2.2680) (5.2151) (0.0823) (0.1939) 
 70˚F 0.3974 -1.375 0.0072 -0.0215 
  (1.0644) (2.2352) (0.0358) (0.0919) 
 80˚F 2.7452 3.1232 -0.0514 0.0334 
  (1.0453) (2.3629) (0.0400) (0.0808) 
 85˚F -2.9906 -2.5462 0.0317 0.0864 
  (1.2028) (3.0491) (0.0408) (0.0930) 
 90˚F 1.8507 1.1009 0.014 -0.1176 
  (0.8388) (2.0613) (0.0236) (0.0659) 

Observations  61,158 61,040 66,400 41,123 

Note: Robust standard errors clustered at the district level are shown in parenthesis. 
 

 


